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1 The Wishart Distribution

1.1 Intuitive Understanding

The Wishart distribution is the multivariate extension of the gamma distribution, although
most statisticians use the Wishart distribution in the special case of integer degrees of freedom, in
which case it simplifies to a multivariate generalization of the χ2 distribution. As the χ2 distribution
describes the sums of squares of n draws from a univariate normal distribution, the Wishart
distribution represents the sums of squares (and cross-products) of n draws from a multivariate
normal distribution.
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1.2 Mathematical Understanding

PDF Let S ∼ Wishp(Σ, ν), where Σ denotes a positive definite scale matrix (which can be
thought of as a variance/covariance matrix from a multivariate normal distribution), ν is the
parameter that denotes the degrees of freedom, and p indicates the dimensions of S (i.e., S ∈ Rp×p).
Then S is positive definite with probability density function (pdf)

f(S) =
|S| ν−p−1

2

2
νp
2 |Σ| ν2 Γp

(
ν
2

) exp

[
−1

2
tr(Σ−1S)

]
(1)

where |A| represents the determinant of square matrix A, tr(A) is the trace of square matrix A
(i.e., the sum of the diagonal elements of A), and

Γp(x) = π
1
2(p2)

p∏
j=1

Γ[x+ (1− j)/2] (2)

is the multivariate generalization of the gamma function, Γ. Note that we must have ν > p − 1
to ensure that S is invertible. If ν > p − 1 does not hold, then Wishp(Σ, ν) is called a Singular
Wishart distribution due to Σ being a singular matrix.

Individual Variates Similar to the χ2 distribution, draws from a Wishart distribution represent
sums of squares and not variances. Because the scale matrix (Σ) can be thought of as a population
variance/covariance matrix, individual draws from the Wishart distribution will often be several
times the magnitude of the variance/covariance matrix. Note that if X ∼ χ2(n), then X =∑n

i=1 Z
2
i where Z1, . . . , Zn

iid∼ N(0, 1), so the sums of squares extension to the Wishart distribution
is necessary.

Sum of Individual Variates A Wishart distribution acts like a distribution for the sums of
squares and cross-products. To see the relationship between a Wishart distribution and sums
of squares, let S1,S2, . . . ,Si, . . . ,Sk be independent from k Wishart distributions where Si ∼
Wish(Σ, νi). Then

SS =
k∑
i=1

Si ∼Wish

(
Σ,

k∑
i=1

νi

)
(3)

In other words, Si can be thought of as the sums of squares matrix for a sub-sample of νi scores
from a multivariate normal distribution. And SS =

∑k
i=1 Si is the sums of squares matrix across

the k sub-samples. However, when the k sub-samples are independent (all with population vari-
ance/covariance matrix Σ) then the sums of squares across the k sub-samples is equivalent to the
sums of squares across the N =

∑k
i=1 νi total scores.

Expected Value The expected value of S is

E(S) = νΣ (4)

Also in parallel with the χ2 distribution, the expected value of a Wishart distribution depends on
number of draws one makes from the multivariate normal distribution. In comparison, the expected
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value of a χ2(ν) distribution is ν, so that the only differences between a Wishart expectation and
a χ2 expectation are the underlying dimensionality of the data and a scale component.

Variance We can find the individual variances of the elements of S. For instance, the variance
of the ijth element of S is:

Var(Sij) = ν(σ2
ij + σiiσjj) (5)

where σij is the ijth element of the Σ matrix and can be thought of as the population covariance
between variable i and variable j. Note that if X ∼ χ2(ν), then p = 1, so that the only element of
the variance/covariance matrix is σ11 = σ2

11 = 1. Therefore, we get Var(X) = ν(1 + 1 × 1) = 2ν,
which is the familiar variance of a χ2(ν) variable.

Equation (5) is a set of variances rather than depicting the variance/covariance matrix because
every observation of the Wishart distribution is a matrix. Therefore, describing all combinations of
variances and covariance of S requires either an array of higher order or an outer/tensor/Kronecker
operation to represent that higher order array as a matrix. The covariance matrix of S can be
represented as1

Cov(S) = Cov

(
ν∑
i=1

xix
T
i

)

=
ν∑
i=1

Cov(xix
T
i ) (by independence)

= νCov(Cziz
T
i CT ) (6)

where Σ = CCT is the Cholesky decomposition of the (square, symmetric) matrix Σ, and
E(ziz

T
i ) = Ip. Next, apply the vec operator to S, which forms a long vector by stacking the

columns of S, so that Cov[vec(S)] is a matrix rather than an array, and letting z = zi (because all
of the z vectors have the same distribution), we have

Cov[vec(S)] = νCov[vec(CzzTCT )]

= νCov[(C⊗C)vec(zzT )] (by the vec to Kronecker property)

= ν(C⊗C)Cov[vec(zzT )](C⊗C)T

= ν(C⊗C)Cov[z⊗ z](CT ⊗CT ) (by vec and Kronecker properties)

To determine Cov[vec(S)] (as a proxy for Cov(S)), one would only need to know Cov[z⊗z]. Because
z is a random vector of z-scores from a normal population, there are only five, unique terms in
Cov[z⊗ z]: (1) The variance of Z2

k (where k is any element of z); (2) The variance of ZkZl (where
k 6= l are any two elements of z); (3) The covariance between ZkZl and ZlZk; (4) The covariance
between Z2

k and Z2
l ; and (5) The covariance between ZiZj and ZkZl (where at most two of i, j, k,

or l are the same).

1. Zk is standard normally distributed, so Z2
k follows a χ2(1) distribution with variance equal

to 2(1) = 2. Therefore Var(Z2
k) = 2 for all k.

1The initial idea for this derivation was presented in Eaton (2007), although in a nearly incomprehensible form

3



2. Zk and Zl are uncorrelated standard normal random variables, which implies that they
are also independent. Therefore, Var(ZkZl) = E[(ZkZl)

2] − E[Zk]E[Zl] = E(Z2
kZ

2
l ) − 0 =

E(Z2
k)E(Z2

l ) due to independence, so that Var(ZkZl) = E(Z2
k)E(Z2

l ) = 1× 1 = 1 because Z2
k

and Z2
l both follow a χ2(1) distribution with expected value equal to 1(1) = 1.

3. Zk and Zl are uncorrelated standard normal random variables, so Cov(ZkZl, ZlZk) = E(ZkZlZlZk)−
E(ZkZl)E(ZlZk) = E(Z2

kZ
2
l )−E(Zk)

2E(Zl)
2 = 1−0 = 1 due to independence and χ2(1) prop-

erties.

4. Zk and Zl are uncorrelated standard normal random variables, so that Cov(Z2
k , Z

2
l ) =

E(Z2
kZ

2
l )− E(Z2

k)E(Z2
l ) = 1− 1 = 0 due to independence and χ2(1) properties.

5. Because Zi, Zj, Zk, and Zl are all independent, Cov(ZiZj, ZkZl) = 0 (even if two of i, j, k,
or l are the same).

Therefore, the [p(k− 1) + k, p(k− 1) + k] elements of Cov[z⊗ z] will all be 2 because Var(Z2
k) = 2

for all k, and the remaining diagonal elements of Cov[z⊗z] will all be 1 because Var(ZkZl) = 1 for
all k 6= l. The off-diagonal elements of Cov[z⊗ z] must be 0 except for those elements symbolizing
the covariance between ZiZj and ZjZi, which will be 1. Ultimately, Cov[z ⊗ z] can be written
as (Ip ⊗ Ip + Mp), where Mp is a p2 × p2 matrix of 1s and 0s. The elements of vec(Mp) can be
described as follows:

• A single 1 always surrounding a sequence of 0s.

• The length of a 0 sequence is one of the following two forms:

– Define Big = p2 + (p− 1).

– Define Small = p.

• A set can be defined as

– A repetition of p− 1 Big sequences followed by

– one Small sequence, where

– each sequence is bracketed by 1s.

Using the above terminology, vec(Mp) is composed of p− 1 sets followed by a repetition of p− 1
Big sequences. For instance, if p = 3, then

vec(Mp) = [1, 11 0s, 1, 11 0s, 1, 3 0s, 1, 11 0s, 1, 11 0s, 1, 3 0s, 1, 11 0s, 1, 11 0s, 1]

Therefore:

Cov[vec(S)] = ν(C⊗C)Cov[z⊗ z](CT ⊗CT )

= ν(C⊗C)(Ip ⊗ Ip + Mp)(C
T ⊗CT )

= ν[(C⊗C)(CT ⊗CT ) + (C⊗C)(Mp)(C
T ⊗CT )]

= ν[Σ⊗Σ + (C⊗C)(Mp)(C
T ⊗CT )] (7)
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And we can check the derivation by simulating draws from a Wishart distribution and comparing
the simulated covariance with the empirical covariance matrix calculated using Equation (7).

> # A test variance covariance matrix:

> Sig <- matrix(c(1, .7, .6,

+ .7, 1, .4,

+ .6, .4, 1), nrow = 3)

> p <- dim(Sig)[1]

> df <- 4

> ## EMPIRICAL (USING SIMULATION) ##

>

> set.seed(901254) # for replication

> reps <- 100000 # number of obs in our sampling dist

> W.empir <- matrix( nrow = reps, ncol = length( c(Sig) ) )

> for(i in 1:reps)

+ W.empir[i, ] <- c(rwish(v = df, S = Sig))

> ## THEORETICAL (USING EQUATION) ##

>

> # The Cholesky decomposition of Sig:

> C <- t( chol(Sig) )

> # The strange M matrix:

> M <- matrix(c(rep(c(rep(c(1, rep(0, times = p*p+(p-1))), times = p-1),

+ 1, rep(0, times = p)),

+ times = p-1),

+ rep(c( 1, rep(0, times = p*p+(p-1)) ), times = p-1),

+ 1),

+ nrow = p^2)

> # Which can also be written as follows (when p = 3):

> # M <- matrix( c(1, rep(0, 11), 1, rep(0, 11), 1, rep(0, 3),

> # 1, rep(0, 11), 1, rep(0, 11), 1, rep(0, 3),

> # 1, rep(0, 11), 1, rep(0, 11), 1),

> # nrow = p^2 )

>

> # And looks like the following:

> M

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

[1,] 1 0 0 0 0 0 0 0 0

[2,] 0 0 0 1 0 0 0 0 0

[3,] 0 0 0 0 0 0 1 0 0

[4,] 0 1 0 0 0 0 0 0 0

[5,] 0 0 0 0 1 0 0 0 0

[6,] 0 0 0 0 0 0 0 1 0

[7,] 0 0 1 0 0 0 0 0 0

[8,] 0 0 0 0 0 1 0 0 0

[9,] 0 0 0 0 0 0 0 0 1

> # The function derived above (with four degrees of freedom):
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> W.theor <- {df * ( kronecker(Sig, Sig) +

+ kronecker(C, C) %*% M %*% kronecker(t(C), t(C)) ) }

> ## COMPARING VAR/COV MATRICES ##

>

> ## 1. EMPIRICAL ##

> round(var(W.empir), digits = 2)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

[1,] 7.99 5.62 4.76 5.62 3.95 3.34 4.76 3.34 2.86

[2,] 5.62 6.00 3.27 6.00 5.63 3.51 3.27 3.51 1.93

[3,] 4.76 3.27 5.41 3.27 2.24 3.74 5.41 3.74 4.76

[4,] 5.62 6.00 3.27 6.00 5.63 3.51 3.27 3.51 1.93

[5,] 3.95 5.63 2.24 5.63 8.02 3.19 2.24 3.19 1.30

[6,] 3.34 3.51 3.74 3.51 3.19 4.63 3.74 4.63 3.18

[7,] 4.76 3.27 5.41 3.27 2.24 3.74 5.41 3.74 4.76

[8,] 3.34 3.51 3.74 3.51 3.19 4.63 3.74 4.63 3.18

[9,] 2.86 1.93 4.76 1.93 1.30 3.18 4.76 3.18 7.95

> ## 2. THEORETICAL ##

> round(W.theor, digits = 3)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

[1,] 8.00 5.60 4.80 5.60 3.92 3.36 4.80 3.36 2.88

[2,] 5.60 5.96 3.28 5.96 5.60 3.52 3.28 3.52 1.92

[3,] 4.80 3.28 5.44 3.28 2.24 3.76 5.44 3.76 4.80

[4,] 5.60 5.96 3.28 5.96 5.60 3.52 3.28 3.52 1.92

[5,] 3.92 5.60 2.24 5.60 8.00 3.20 2.24 3.20 1.28

[6,] 3.36 3.52 3.76 3.52 3.20 4.64 3.76 4.64 3.20

[7,] 4.80 3.28 5.44 3.28 2.24 3.76 5.44 3.76 4.80

[8,] 3.36 3.52 3.76 3.52 3.20 4.64 3.76 4.64 3.20

[9,] 2.88 1.92 4.80 1.92 1.28 3.20 4.80 3.20 8.00

Notice that reps must be very large to be for the empirical covariance matrix to be close to the
theoretical covariance matrix.

1.3 Relationship to the Normal Distribution

It is useful to diagram the explicit relationship between a multivariate normally distributed
variable and the Wishart distribution. As we described earlier, the Wishart distribution can be
thought of drawing sums of squares from a multivariate normal distribution with variance/covari-
ance parameter Σ. Specifically, let x1,x2, . . . ,xn be independent and identically distributed draws
from a p-dimensional multivariate normal distribution, or

xi
iid∼ N(0,Σ) i = 1, 2, . . . , n (8)

Then we can stack the random vectors as rows of an n× p matrix X,
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X =


xT1
xT2
...

xTn


so that the Wishart distribution describes the probability density function of the p× p matrix

S = XTX ∼Wishp(Σ, n). (9)

Note that we used ν to indicate the general degrees of freedom parameter of the Wishart distribu-
tion, but we changed the degrees of freedom parameter to n when referring to sample size of the
normal distribution (for the sake of convention).

1.4 Relationship to the χ2 Distribution

It is also useful to diagram the relationship between the Wishart distribution and the χ2

distribution (assuming, of course, an integer degrees of freedom, ν). Let S ∼ Wishp(Σ, ν). Then
given any λ ∈ Rp, the quadratic form λTSλ is a scaled χ2(ν) variable, such that

λTSλ ∼ λTΣλ× χ2(ν). (10)

Many people refer to σλ = λTΣλ as the scale parameter for a χ2(ν) distribution. And if Σ is an
identity matrix and λ is a vector of 1s, then λΣλ = p.

1.5 Application in Bayesian Statistics

The Wishart distribution is frequently used as the prior on the precision matrix parameter (T =
Σ−1) of a multivariate normal distribution. Because the gamma distribution is the conjugate prior
for the precision parameter (τ = 1/σ2) of a univariate normal distribution, the Wishart distribution
(as its multivariate generalization) extends conjugacy to the multivariate normal distribution.
Importantly, when using the Wishart distribution as the posterior distribution for T, then the
degrees of freedom parameter (ν) represents the tuning parameter. The larger the ν, the more
prior observations we are supposed to have collected, and the more the prior distribution influences
the posterior distribution for T.

Specifically, let x1,x2, . . . ,xn be independent and identically distributed draws from a p-
dimensional multivariate normal distribution with mean vector 0 and precision matrix T = Σ−1,
where Σ is the variance/covariance matrix of the multivariate normal distribution. If we put a
Wishart prior distribution on the parameter T such that T ∼ Wishp(Λ, ν), then the posterior
distribution of T (i.e., after the data have been collected) will also be Wishart distributed with
T|X = [x1,x2, . . . ,xn]T ∼Wishp

(
(Λ−1 + S)−1, ν + n

)
where S is the sample sums of squares ma-

trix. This derivation follows naturally from the conjugacy of the Inverse-Wishart distribution and
the variance/covariance parameter of the multivariate normal distribution, as derived in Section
2.4.1. Intuitively, Λ is the inverse of the prior sums of squares matrix based off of ν observa-
tions. Thererfore, Λ−1 is the prior sums of squares matrix, so that Λ−1 + S is the posterior sums
of squares matrix based off of ν + n observations. But the Wishart distribution is modeling the
precision matrix (and not the variance/covariance matrix), so we must re-invert the posterior sums
of squares matrix to model the precision: (Λ−1 + S)−1.
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1.6 An Example Using R

The following example highlights properties of the Wishart distribution.

> # A function to calculate the Wishart-y things:

> go.wish <- function(reps, Sig, df){

+

+ # A fancy-schmancy way of generating Wishart draws:

+ SSs <- sapply(1:reps,

+ function(x, df, sig) rwish(df, sig)[!upper.tri(sig)],

+ df = df, sig = Sig)

+

+ # --> The mean of the Wishart draws (as a matrix):

+ SS <- matrix( 0, nrow = nrow(Sig), ncol = ncol(Sig) ) # set matrix

+ SS[!upper.tri(SS)] <- colMeans( t(SSs) ) # fill lower-diag

+ SS <- SS + t(SS) - diag( diag(SS) ) # fill upper-diag

+

+ # --> The variance/covariance matrix from the Wishart draws:

+ simSig <- SS / df

+

+ # --> Returning a bunch of stuffy-stuff:

+ list(simSS = SS, simSig = simSig,

+ expSS = df * Sig, expSig = Sig)

+

+ } # END go.wish FUNCTION

> # Population-y stuff (for every run)

> nreps <- 1000 # number of random draws

> Sigma <- matrix(c(10, 5,

+ 5, 10), nrow = 2) # population covariance mat

> #####

> # 1 # (LOW DEGREES OF FREEDOM)

> #####

> df1 <- 3

> # Running the Wishart Function:

> set.seed(125)

> SS1 <- go.wish(reps = nreps, Sig = Sigma, df = df1)

> # --> The mean of the Wishart draws:

> SS1$simSS

[,1] [,2]

[1,] 29.01173 14.25635

[2,] 14.25635 27.81542

> # --> The expected value of the Wishart distribution:

> SS1$expSS

[,1] [,2]

[1,] 30 15

[2,] 15 30
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> # --> The variance/covariance matrix from the Wishart draws:

> SS1$simSig

[,1] [,2]

[1,] 9.670578 4.752117

[2,] 4.752117 9.271806

> # --> The original variance/covariance matrix:

> SS1$expSig

[,1] [,2]

[1,] 10 5

[2,] 5 10

> # The estimated variance/covariance matrix is fairly similar to

> # the actual variance/covariance matrix.

>

> # What happens when we increase the degrees of freedom?

>

> #####

> # 2 # (HIGH DEGREES OF FREEDOM)

> #####

>

> df2 <- 100

> # Running the Wishart Function:

> set.seed(126)

> SS2 <- go.wish(reps = nreps, Sig = Sigma, df = df2)

> # --> The mean of the Wishart draws:

> SS2$simSS

[,1] [,2]

[1,] 1002.058 501.3810

[2,] 501.381 998.8175

> # --> The expected value of the Wishart distribution:

> SS2$expSS

[,1] [,2]

[1,] 1000 500

[2,] 500 1000

> # --> The variance/covariance matrix from the Wishart draws:

> SS2$simSig

[,1] [,2]

[1,] 10.02058 5.013810

[2,] 5.01381 9.988175

> # --> The original variance/covariance matrix:

> SS2$expSig

[,1] [,2]

[1,] 10 5

[2,] 5 10
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>

> # The estimated sums of squares matrix is further away from

> # the actual sums of squares matrix, but the estimated

> # variance/covariance matrix is closer to the actual

> # variance/covariance matrix.

Notice in the above code that when ν = 3 (a small degrees of freedom), the average sums of squares
matrix was slightly closer to the population sums of squares matrix than when ν = 100. A sum is
more variable than individual scores. But the average of the sums is much higher as the degrees
of freedom increase. By putting the sums of squares onto the same metric (e.g., turning the sums
of squares into variances), increasing the degrees of freedom results in a tighter distribution.

2 The Inverse-Wishart Distribution

2.1 Intuitive Understanding

The Inverse-Wishart distribution is the multivariate extension of the inverse-gamma distribu-
tion (or, similar to the Wishart distribution, the inverse-χ2 distribution in the case of integer
degrees of freedom). Oddly, even though the Wishart distribution generates sums of squares ma-
trices, one can think of the Inverse-Wishart distribution as generating random covariance matrices.
However, those covariance matrices would be inverses of the covariance matrices generated under
Wishart distribution. Therefore, the covariance matrices generated in either case (as well as the
scale parameter matrix) can be thought of as (1) a covariance matrix, or (2) a precision matrix.
The interpretation of the random variable depends on the research context.

2.2 Mathematical Understanding

PDF Let T ∼ InvWishp(Ψ,m), where Ψ denotes a positve definite scale matrix (which can be
thought of as a sums of squares matrix from a multivariate normal distribution), m is the parameter
that denotes the degrees of freedom, and p indicates the dimensions of T (i.e., T ∈ Rp×p). Then
T is positive definite with probability density function (pdf)

f(T) =
|Ψ|m/2

|T|m+p+1
2 2

mp
2 Γp

(
m
2

) exp

[
−1

2
tr(ΨT−1)

]
(11)

with |A|, tr(A), and Γp(x) defined as in Equation (1). Note that we must have m > p − 1 to
ensure that S is invertible. If m > p − 1 does not hold, then we must use the Moore-Penrose
inverse as our random variable and InvWishp(Ψ,m) is then called a Generalized Inverse Wishart
distribution. Cook and Forzani (2011) discuss the moments of the Generalized Inverse Wishart
distribution (and, by extension, the Inverse Wishart distribution).

Individual Variates One can think of individual draws from the Inverse-Wishart distribution
as the exact opposite as those from the Wishart distribution. In other words, comparing the pdf of
both distributions, it appears as though S (the observation of the Wishart distribution) is similar
to Ψ (the parameter of the Inverse-Wishart distribution) and Σ (the parameter of the Wishart
distribution) is similar to T (the observation of the Inverse-Wishart distribution). Therefore, it is
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helpful to view the Inverse-Wishart distribution as taking a sums-of-squares matrix as its parameter
and generating random covariance matrices, although technically, the Inverse-Wishart distribution
is taking an inverse covariance matrix as its parameter and generating inverse sums-of-squares
matrices. But the scales are essentially the same.

Expected Value The expected value of T is

E(T) =
Ψ

m− p− 1
(12)

And as we described with respect to the χ2 distribution, the only differences between the
Inverse-Wishart expectation and the inverse-χ2 expectation are the underlying dimensionality of
the data and a scale component. Whereas the χ2 distribution always has expectation, the inverse-χ2

distribution only has calculable expectation if m > 2. Similarly, the Inverse-Wishart distribution
has finite expectation only when m > p− 1.

Variance We can find the individual variances of the elements of T. For instance, the variance
of the ijth element of T is:

Var(Tij) =
(m− p+ 1)ψ2

ij + (m− p− 1)ψiiψjj

(m− p)(m− p− 1)2(m− p− 3)
(13)

where ψij is the ijth element of the Ψ matrix and can be thought of as the inverse-population
covariance between variable i and variable j (or alternatively, the sum of cross-products between
variable i and variable j). And if X ∼ Inv-χ2(m), then p = 1, so that the only element of the

variance/covariance matrix is ψ11 = ψ2
11 = 1. Therefore, we get Var(X) = (m)×1+(m−2)×1×1

(m−1)(m−2)2(m−4) =
2(m−1)

(m−1)(m−2)2(m−4) = 2
(m−2)2(m−4) , which is the variance of an inverse-χ2(m) variable.

Similar to the Wishart distribution, we would need to use complicated linear algebra properties
(including tensor/Kronecker products) to represent all of the variances and covariances of the
individual Inverse-Wishart elements in a nice form.

2.3 Relationship to the Wishart Distribution

The relationship between the Inverse-Wishart distribution and other distributions can be viewed
through its relationship to the Wishart distribution. As the Wishart distribution is related to the
normal distribution, χ2 distribution, and gamma distribution, the Inverse-Wishart distribution is
related to those distributions in a similar way. Let S ∼ Wishp(Σ, ν), as defined in Equation (1)
with all of the stipulations therein. Then S−1 ∼ InvWishp(Σ

−1,m) where m = ν is the degrees
of freedom. Note that many sources diverged on the degrees of freedom relationship between the
Wishart and Inverse-Wishart distributions. Wikipedia claims that m = ν, Yu (n.d.) claimed
m = ν + p + 1, and Lauritzen (2009) claimed m = ν + p− 1. Unfortunately, the Inverse-Wishart
distribution can be parameterized differently, and each parameterization results in a different
degrees of freedom. The most common parameterization sets m = ν, so that the Inverse-Wishart
pdf is directly comparible to that of the Wishart distribution.
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2.4 Application in Bayesian Statistics

The Inverse-Wishart distribution is frequently used as the prior on the variance/covariance
matrix parameter (Σ) of a multivariate normal distribution. Note that the inverse-gamma distri-
bution is the conjugate prior for the variance parameter (σ2) of a univariate normal distribution,
and the Inverse-Wishart distribution (as its multivariate generalization) extends conjugacy to the
multivariate normal distribution.

Let x1,x2, . . . ,xn be independent and identically distributed draws from a p-dimensional mul-
tivariate normal distribution with mean vector 0 and variance/covariance matrix Σ. In other
words, xi ∼ N(0,Σ) where i = 1, 2, . . . , n. If we put an Inverse-Wishart prior distribution on the
parameter Σ such that Σ ∼ InvWishp(Ψ,m), then the posterior distribution of Σ (i.e., after the
data have been collected) will also be Inverse-Wishart distributed with Σ|X = [x1,x2, . . . ,xn]T ∼
InvWishp(Ψ + S,m + n) where S is the sample sums of squares matrix. Therefore, m essentially
acts as the number of observations we had observed prior to collecting the data, or, alternatively,
the number of observations on which our prior sums-of-squares matrix Ψ is based.

2.4.1 Demonstration of Conjugacy

It should be fairly straightforward to demonstrate conjugacy. As was set up in the above section,
let xi (i = 1, . . . , n) be i.i.d. draws from a p-dimensional multivariate normal distribution with mean
vector 0 and variance/covariance matrix Σ. The mean vector, µ, can actually be anything, as long
as it is known, and we can re-center the scores by subtracting the mean vector from each of them.
Next, assuming that Σ ∼ InvWishp(Ψ,m), we can write the posterior distribution as proportional
to the likelihood times the prior (where f designates the data pdf and g indicates the prior pdf):

Posterior ∝ Likelihood× Prior

= f(X|Σ)× g(Σ|Ψ,m)

=
[ n∏
i=1

f(xi|Σ)
]
× g(Σ|Ψ,m)

=

[
n∏
i=1

(2π)−
k
2 |Σ|−

1
2 exp

[
−1

2
xTi Σ−1xi

]]
× |Ψ|m/2

|Σ|m+p+1
2 2

mp
2 Γp

(
m
2

) exp

[
−1

2
tr(ΨΣ−1)

]

= (2π)−
nk
2 |Σ|−

n
2 exp

[
−1

2

n∑
i=1

(xTi Σ−1xi)

]
× |Ψ|m/2

|Σ|m+p+1
2 2

mp
2 Γp

(
m
2

) exp

[
−1

2
tr(ΨΣ−1)

]
(14)

Note that many terms in Equation (14) are multiplicative constants and can be safely removed

without affecting the shape of the function. Those multiplicative constants are: (2π)−
nk
2 , |Ψ|m/2,

2
mp
2 , and Γp

(
m
2

)
. Removing those constants and factoring, we find that
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Posterior ∝ (2π)−
nk
2 |Σ|−

n
2 exp

[
−1

2

n∑
i=1

(xTi Σ−1xi)

]
× |Ψ|m/2

|Σ|m+p+1
2 2

mp
2 Γp

(
m
2

) exp

[
−1

2
tr(ΨΣ−1)

]

∝ |Σ|−
n
2 exp

[
−1

2

n∑
i=1

(xTi Σ−1xi)

]
× |Σ|−

m+p+1
2 exp

[
−1

2
tr(ΨΣ−1)

]
.

To finish the demonstration, we need to combine like terms and consider determinant and
trace properties. First, the determinant of a product is the product of the determinants, or
|AB| = |A||B|, which allows us to combine the |Σ|−n2 from the multivariate normal density with

the |Σ|−m+p+1
2 from the Inverse-Wishart density. Second, a scalar is equal to the trace of itself, or

a = tr(a) (where a is a scalar), which allows us to write
∑n

i=1(x
T
i Σ−1xi) = tr

[∑n
i=1(x

T
i Σ−1xi)

]
.

Third, the trace operator is invariant under cyclic permutation, or tr(AB) = tr(BA), which
allows us to rotate our newly formed trace so that tr

[∑n
i=1(x

T
i Σ−1xi)

]
= tr

[∑n
i=1(xix

T
i Σ−1)

]
=

tr
[(∑n

i=1 xix
T
i

)
Σ−1

]
= tr(SΣ−1) (where S is short hand for the sums of squares matrix). Finally,

the sum of traces is equal to the trace of a sum, or tr(X) + tr(Y) = tr(X + Y) (as long as X and
Y are square matrices of the same dimension), which allows us to combine the tr(SΣ−1) (from the
multivariate normal density) with the tr(ΨΣ−1) (from the Inverse-Wishart density).

Taking into consideration all of the properties of traces and determinants, we ultimately have

Posterior ∝ Likelihood× Prior

∝ |Σ|−
n
2 exp

[
−1

2

n∑
i=1

(xTi Σ−1xi)

]
× |Σ|−

m+p+1
2 exp

[
−1

2
tr(ΨΣ−1)

]
= |Σ|−

n
2 |Σ|−

m+p+1
2 exp

[
−1

2
tr(SΣ−1)

]
exp

[
−1

2
tr(ΨΣ−1)

]
= |Σ|−

n+m+p+1
2 exp

[
−1

2
tr(SΣ−1)− 1

2
tr(ΨΣ−1)

]
= |Σ|−

(n+m)+p+1
2 exp

[
−1

2
tr(SΣ−1 + ΨΣ−1)

]
= |Σ|−

(n+m)+p+1
2 exp

[
−1

2
tr
(
(S + Ψ)Σ−1

)]
. (15)

Note that Equation (15) is the kernal of (i.e., proportional to) an Inverse-Gamma distribution
with new parameters Ψ′ = Ψ + S and m′ = n + m. Therefore, we have shown that Σ|X ∼
InvWishp(Ψ + S,m+ n), and our demonstration is complete. �

2.5 An Example Using R

The following example highlights properties of the Inverse Wishart distribution.

> # A function to calculate the Inverse-Wishart-y things:

> go.iwish <- function(reps, Psi, df){

+
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+ # A fancy-schmancy way of generating Wishart draws:

+ Sigs <- sapply(1:reps,

+ function(x, df, ss) riwish(df, ss)[!upper.tri(ss)],

+ df = df, ss = Psi)

+

+ # --> The mean of the Inverse-Wishart draws (as a matrix):

+ Sig <- matrix( 0, nrow = nrow(Psi), ncol = ncol(Psi) ) # set matrix

+ Sig[!upper.tri(Sig)] <- colMeans( t(Sigs) ) # fill lower-diag

+ Sig <- Sig + t(Sig) - diag( diag(Sig) ) # fill upper-diag

+

+ # --> The sums-of-squares matrix from the Inverse-Wishart draws:

+ simSS <- Sig * (df - dim(Psi)[1] - 1)

+

+ # --> Returning a bunch of stuffy-stuff:

+ list(simSig = Sig, simSS = simSS,

+ expSig = Psi / (df - dim(Psi)[1] - 1),

+ expSS = Psi)

+

+ } # END go.iwish FUNCTION

> # Population-y stuff (for every run)

> nreps <- 1000 # number of random draws

> Psi <- matrix(c(100, 90,

+ 90, 100), nrow = 2) # population SS mat

> #####

> # 1 # (LOW DEGREES OF FREEDOM)

> #####

> df1 <- 6

> # Running the Inverse-Wishart Function:

> set.seed(124)

> Sig1 <- go.iwish(reps = nreps, Psi = Psi, df = df1)

> # --> The mean of the Inverse-Wishart draws:

> Sig1$simSig

[,1] [,2]

[1,] 32.72979 29.89009

[2,] 29.89009 33.89546

> # --> The expected value of the Inverse-Wishart distribution:

> Sig1$expSig

[,1] [,2]

[1,] 33.33333 30.00000

[2,] 30.00000 33.33333

> # --> The sums-of-squares matrix from the Inverse-Wishart draws:

> Sig1$simSS

[,1] [,2]

[1,] 98.18936 89.67026

[2,] 89.67026 101.68638
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> # --> The original sums-of-squares matrix:

> Sig1$expSS

[,1] [,2]

[1,] 100 90

[2,] 90 100

> # What happens when we increase the degrees of freedom?

>

> #####

> # 2 # (HIGH DEGREES OF FREEDOM)

> #####

>

> df2 <- 100

> # Running the Wishart Function:

> set.seed(125)

> Sig2 <- go.iwish(reps = nreps, Psi = Psi, df = df2)

> # --> The mean of the Inverse-Wishart draws:

> Sig2$simSig

[,1] [,2]

[1,] 1.0281028 0.9232746

[2,] 0.9232746 1.0259488

> # --> The expected value of the Inverse-Wishart distribution:

> Sig2$expSig

[,1] [,2]

[1,] 1.0309278 0.9278351

[2,] 0.9278351 1.0309278

> # --> The sums-of-squares matrix from the Inverse-Wishart draws:

> Sig2$simSS

[,1] [,2]

[1,] 99.72598 89.55764

[2,] 89.55764 99.51703

> # --> The original sums-of-squares matrix:

> Sig2$expSS

[,1] [,2]

[1,] 100 90

[2,] 90 100

>

> # Notice how the resulting variance/covariance matrix is smaller due

> # to the extra number of observations resulting in the SAME sums-of-squares.

Notice in the above code that when m = 5 (a small degrees of freedom), the average sums of
squares matrix was further away from the population sums of squares matrix than when m = 100.
But increasing the degrees of freedom results in not just a tighter distribution of the variances (as
was the case with the Wishart distribution) but also a smaller overall variance.
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3 Graphs of the Wishart/Inverse Wishart

Because the Wishart/Inverse Wishart are distributions describing variance/covariance matrices,
they are impossible to visualize in multidimensional form. However, as a simplification, we can
view both distributions in univariate form via the χ2 and inverse-χ2 distributions.

3.1 The Wishart (err... χ2) Distribution

Figure 1 displays the χ2 distribution for various degrees of freedom as a simplification of a
Wishart distribution. Note that as df → ∞, the density shifts to the right and becomes more
variable. However, if one were to put the density into the variance metric rather than the sums-
of-squares metric, s/he would find that the variances were actually less variable than the sums-of-
squares.

> x <- seq(0, 10, by = .01)

> plot(x = x, y = dchisq(x, df = 1),

+ ylim = c(0, .5),

+ xlab = expression(chi^2), ylab = "Density",

+ main = "",

+ type = "l", lwd = 2, col = "purple", axes = FALSE)

> axis(1, col = "grey")

> axis(2, col = "grey")

> points(x = x, y = dchisq(x, df = 3),

+ type = "l", lwd = 2, col = "blue")

> points(x = x, y = dchisq(x, df = 6),

+ type = "l", lwd = 2, col = "green")

> legend(x = "topright", inset = .05, bty = "n",

+ legend = c(expression(paste(chi^2, "(df = 1)", sep = "")),

+ expression(paste(chi^2, "(df = 3)", sep = "")),

+ expression(paste(chi^2, "(df = 6)", sep = ""))),

+ lwd = 2, col = c("purple", "blue", "green"))
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Figure 1: Several different χ2 densities. The purple curve corresponds to χ2 with df = 1; the blue
curve corresponds to χ2 with df = 3; and the green curve corresponds to χ2 with df = 6. Note
that the χ2 distribution has a non-zero mode for df > 2.

3.2 The Inverse-Wishart (err... inverse-χ2) Distribution

Figure 2 displays the inverse-χ2 distribution for various degrees of freedom as a simplification
of a Inverse-Wishart distribution. Note that as df → ∞, the distribution becomes more peaked
around inverse-χ2 = 1. The inverse-χ2 distribution is in the variance metric, so by increasing the
degrees of freedom (i.e., the sample size), the variance estimates become concentrated around the
population variance of 1.0.

> x <- seq(0, 3, by = .01)

> plot(x = x, y = dinvchisq(x, df = 1, scale = 1),

+ ylim = c(0, 1),

+ xlab = expression(paste("Inverse-", chi^2, sep = "")), ylab = "Density",

+ main = "",

+ type = "l", lwd = 2, col = "darkmagenta", axes = FALSE)

> axis(1, col = "grey")

> axis(2, col = "grey")

> points(x = x, y = dinvchisq(x, df = 3, scale = 1),

+ type = "l", lwd = 2, col = "navy")

> points(x = x, y = dinvchisq(x, df = 6, scale = 1),

+ type = "l", lwd = 2, col = "green4")
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> legend(x = "topright", inset = .05, bty = "n",

+ legend = c(expression(paste("Inv-", chi^2, "(df = 1)", sep = "")),

+ expression(paste("Inv-", chi^2, "(df = 3)", sep = "")),

+ expression(paste("Inf-", chi^2, "(df = 6)", sep = ""))),

+ lwd = 2, col = c("darkmagenta", "navy", "green4"))
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Figure 2: Several different inverse-χ2 densities. The magenta curve corresponds to inverse-χ2 with
df = 1; the navy curve corresponds to inverse-χ2 with df = 3; and the dark green curve corresponds
to inverse-χ2 with df = 6.
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