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Introduction Notation

Notation

A: A matrix
Ac: A matrix held constant

x: A vector
y: A scalar (or a scalar function)

xT or XT : The transpose of x or X
xij : The element in the ith row and jth column of X
(xT )ij : The element in the ith row and jth column of XT

∂Y
∂x : A matrix with elements ∂yij

∂x
∂y
∂X : A matrix with elements ∂y

∂xij

〈x〉i or 〈X〉ij : The ith or ijth place of x or X
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Introduction Notation

Gradient, Jacobian, Hessian

A Gradient is the derivative of a scalar with respect to a vector.

∂f(x)
∂x

=

([
∂f(x)
∂x1

] [
∂f(x)
∂x2

]
. . .

[
∂f(x)
∂xn

])T

If we have the function: f(x) = 2x1x2 + x2
2 + x1x

2
3, then the Gradient is

∂f(x)
∂x

=

([
∂f(x)
∂x1

] [
∂f(x)
∂x2

] [
∂f(x)
∂x3

])T

=
[
2x2 + x2

3 2x1 + 2x2 2x1x3

]T
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Introduction Notation

Gradient, Jacobian, Hessian

A Jacobian is a the derivative of a vector with respect to a transposed vector.

∂f(x)
∂xT

=



[
∂f1(x)
∂x1

]
. . .

[
∂f1(x)
∂xn

]
... . . .

...[
∂fk(x)
∂x1

]
. . .

[
∂fk(x)
∂xn

]


If we have the function

f(x) =
[
3x21 + x2 ln(x1) sin(x2)

]T
Then the Jacobian is

∂f(x)
∂xT

=

6x1 1
1
x1

0

0 cos(x2)
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Introduction Notation

Gradient, Jacobian, Hessian

The Hessian is derivative of a Gradient with respect to a transposed vector.

∂2f(x)
∂x∂xT

=



[
∂f(x)
∂x21

]
. . .

[
∂f(x)
∂x1∂xn

]
...

. . .
...[

∂f(x)
∂xn∂x1

]
. . .

[
∂f(x)
∂x2n

]


Because our above Gradient is

∂f(x)
∂x

=
[
2x2 + x23 2x1 + 2x2 2x1x3

]T
The Hessian would be

∂2f(x)
∂x∂xT

=

 0 2 2x3
2 2 0

2x3 0 2x1
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Introduction History of Paper

Simplifying Classes of Matrix Derivatives

History of Schöneman’s paper:

1 Wrote it while a post doc at UNC.
2 Originally submitted it to Psychometrika in 1965.
3 Editor mildly criticized paper.

1 Compliment: reformulate certain problems (Lagrange multipliers)
into interesting form (traces).

2 Complaint: why would we want to do that?

4 Revised paper, resubmitted paper, but editorship changed hands,
and took them almost a year to respond (asking for another
revision).

1 The new editor told him that a reviewer said: “nothing wrong with
paper but not too important”.
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Introduction History of Paper

Simplifying Classes of Matrix Derivatives

History of Schöneman’s paper:

5 Later learned that the original delay was caused by a statistician
with expertise in matrix derivatives who thought that the paper
would be published eventually.

6 The paper was published eventually ... 20 years later in MBR.

7 Wrote the article “Better Never than Late: Peer Review and the
Preservation of Prejudice” in 2001.
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Introduction History of Paper

Simplifying Classes of Matrix Derivatives

There are two beneficial properties of Schöneman’s paper:

1 Derivatives are always in matrix form.
2 No need for Dummy Matrices.

But, uses traces, and thus, uses trace properties.

So ... A Review of Traces/Trace Properties:
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Traces Algebraic Trace Properties

What is a Trace?

Definition:
tr (Y) =

∑
i

(yii), Y is square

OK - that’s simple, but what does that mean?

Well, take a square matrix and add up the diagonal elements

A =

a11 · · · a1n
...

. . .
...

an1 · · · ann

 , tr (A) = a11 + a22 + · · ·+ ann
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Traces Algebraic Trace Properties

Linearity of Traces

The MOST important aspect of traces (for our later derivations):

tr :M(R)n → R1 is linear

Thus:

tr (A+B) = tr (A) + tr (B) (1)

and

tr (cA) = c tr (A) (2)
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Traces Algebraic Trace Properties

Transposition of Dependent Variable

Traces have SEVERAL OTHER important properties.

Property 1: Transposition of Dependent Variable

We have:

tr (Y) = tr (YT ) (3)

Thus:

∂tr (Y)

∂X
=
∂tr (YT )

∂X
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Traces Algebraic Trace Properties

Cyclic Permutation

Property 2: Cyclic Permutation

We have:

tr (AB) = tr (BA) (4)

Why? Well, start from the left of Equation (4).

tr (AB) = tr


a11 · · · a1m

...
. . .

...
an1 · · · anm


 b11 · · · b1n

...
. . .

...
bm1 · · · bmn




= a11b11 + · · ·+ a1mbm1 +

m∑
i=1

(a2ibi2) + · · ·+
m∑
i=1

(anibin)

=
n∑

j=1

m∑
i=1

(ajibij)
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Traces Algebraic Trace Properties

Cyclic Permutation

And also start from the right of Equation (4).

tr (BA) = tr


 b11 · · · b1n

...
. . .

...
bm1 · · · bmn


a11 · · · a1m

...
. . .

...
an1 · · · anm




=
∑m

i=1

∑n
j=1 (bijaji) =

∑n
j=1

∑m
i=1 (bijaji) =

n∑
j=1

m∑
i=1

(ajibij)

= tr (AB)

So:

∂tr (AB)

∂X
=
∂tr (BA)

∂X
Rotating the order does not change the trace of square matrices.
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Traces Algebraic Trace Properties

Cyclic Permutation

A consequence of the last derivation:

Let U and H have the same dimensions.
If you want to multiply paired entries (e.g. uijhij) and add all the
multiplications:

Flip one of the matrices, multiply, and take the trace of that
multiplication.

m∑
j=1

n∑
i=1

(uijhij) =

m∑
j=1

n∑
i=1

(
(uT )jihij

)
= tr (UTH) (5)
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Traces Calculus Trace Properties

Transposition of Independent Variable

Calculus Property 1: Transposition of Independent Variable

By definition:

∂tr (Y)

∂X
=
∂tr (Y)

∂xij
, i = 1, . . . , n; j = 1, . . . ,m

where ∂tr (Y)
∂xij

is what we put in the ijth place in our derivative matrix.

Thus:

∂tr (Y)

∂(XT )
=
∂tr (Y)

∂xji
, (j = 1, . . . ,m; i = 1, . . . , n) =

(
∂tr (Y)

∂X

)T

(6)

because ∂tr (Y)
∂xji

is what we put in the ijth place in our derivative matrix.
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Traces Calculus Trace Properties

Transposition of Independent Variable

Deriving with respect to a transposed variable replaces each entry in
the new matrix with the derivative of the corresponding
transposed component.

Replacing every entry with the derivative of the transposed component
→ Transposing the entire matrix of partial derivatives.
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Traces Calculus Trace Properties

Product Rule

Calculus Property 2: Product Rule

An illustration of the product rule:
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Traces Calculus Trace Properties

Product Rule

Calculus Property 2: Product Rule

Based on the previous illustration:

d(uv)

dx
=

(
du

dx

)
(v) + (u)

(
dv

dx

)
In this case, u and v are scalar functions of x.

Now, we want to translate this to matrices and traces of matrices:

Pick any row ui and any column vj from U and V.
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Traces Calculus Trace Properties

Product Rule

If we take the derivative of the matrix product with respect to a scalar:
∂(UV)

∂x

we find that the i,jth place in our new derivative matrix is

∂(uT
i.v.j)

∂x
=
∂(ui1v1j + · · ·+ uinvnj)

∂x

=
∂(ui1v1j)

∂x
+ · · ·+ ∂(uinvnj)

∂x

=
∂ui1
∂x

v1j + ui1
∂v1j

∂x
+ · · ·+ ∂uin

∂x
vnj + uin

∂vnj
∂x
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Traces Calculus Trace Properties

Product Rule

So, now we want to collect terms:

∂(uT
i.v.j)

∂x
=
∂ui1
∂x

v1j + ui1
∂v1j

∂x
+ · · ·+ ∂uin

∂x
vnj + uin

∂vnj
∂x

=

(
∂ui1
∂x

v1j + · · ·+
∂uin
∂x

vnj

)
+

(
ui1

∂v1j

∂x
+ · · ·+ uin

∂vnj
∂x

)
=
∂uT

i.

∂x
v.j + uT

i.

∂v.j

∂x

And because our element is arbitrary, we can generalize:

∂(UV)

∂x
=
∂U
∂x

V+U
∂V
∂x

=
∂(UVc)

∂x
+
∂(UcV)

∂x
(7)
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Traces Calculus Trace Properties

Product Rule

There are two notes on the product rule:

Note 1: For the product rule to make sense, both U and V should be
functions of X.

For the Univariate Case, let u = x2 + 2 and v = 2x+ sin(x). Then:

d(uv)

dx
=

(
du

dx

)
(v) + (u)

(
dv

dx

)
= (2x)

(
2x+ sin(x)

)
+ (x2 + 2)

(
2 + cos(x)

)
= 4x2 + 2x sin(x) + 2x2 + 4 + x2 cos(x) + 2 cos(x)

= x2
(
6 + cos(x)

)
+ 2
(
x sin(x) + cos(x)

)
+ 4

We will discuss the multivariate case later.
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Traces Calculus Trace Properties

Product Rule

There are two notes on the product rule:

Note 2: We can put Vc and Uc inside the derivative funtion, but they
are now constants with respect to X, even if they are functions of X.

For the Univariate Case, let u = x3 + ln(x) and v = 3x2. Then:

d(uvc)

dx
=
d
[(
x3 + ln(x)

)
(3x2)c

]
dx

=

(
3x2 +

1

x

)
(3x2)

= 9x4 + 3x

We will discuss the multivariate case later.
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Traces Calculus Trace Properties

Multidimensional Chain Rule

Calculus Property 3: Chain Rule

Let:
z = 2x2

1 + x1 cos(x2)

Then, by definition:

∂z

∂x
=


[
∂z

∂x1

]
[
∂z

∂x2

]
 =

4x1 + cos(x2)

−x1 sin(x2)


Our partial derivative with respect to x1 is 4x1 + cos(x2), and our
partial derivative with respect to x2 is −x sin(x2). Furthermore, these
go in the respective parts of our derivative matrix (replacing x1 and x2).
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Traces Calculus Trace Properties

Multidimensional Chain Rule

Now if:

x1 = 3t and x2 = t

Then:

dz
dt is now the derivative with respect to t accounted for by x1 and the
derivative with respect to t accounted for by x2.

And we account for:

[4(3t) + cos(t)]
∂x1

∂t
by x1

−(3t) sin(t)∂x2

∂t
by x2
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Traces Calculus Trace Properties

Multidimensional Chain Rule

Thus:

dz

dt
=

(
∂z

∂x

)T ∂x
∂t

=

2∑
i=1

(
∂z

∂xi

∂xi
∂t

)
= [12t+ cos(t)](3) + [−(3t) sin(t)](1)
= 36t+ 3 cos(t)− 3t sin(t)

But: z = 2x2
1 + x1 cos(x2) = 2(3t)2 + (3t) cos(t) = 18t2 + 3t cos(t)

So, another way of getting the same result:

dz

dt
=
d[18t2 + 3t cos(t)]

dt
= 36t+ 3t[− sin(t)] + 3 cos(t) = 36t+ 3 cos(t)− 3t sin(t)
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Traces Calculus Trace Properties

An Easy Way to Remember the Chain Rule

Because effects are slopes and slopes are derivatives, writing out a path
diagram from t to z would have the derivatives along the paths.

�
�

�
�
�

��=

Z
Z
Z
Z
Z
ZZ~

Z
Z
Z
Z
Z
ZZ~

�
�

�
�
�

��=

t

x1 x2

z

∂x1
∂t

∂x2
∂t

∂z
∂x1

∂z
∂x2

The total effect of t on z is found by multiplying the effects down each
path and summing the total effects across paths.
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Traces Calculus Trace Properties

An Easy Way to Remember the Chain Rule

�
�

�
�
�

��=

Z
Z
Z
Z
Z
ZZ~

Z
Z
Z
Z
Z
ZZ~

�
�

�
�
�

��=

t

x1 x2

z

∂x1
∂t

∂x2
∂t

∂z
∂x1

∂z
∂x2

For example, let’s find the total effect of a 1 unit change in t on z.
Well, if t changes 1 unit, then x1 changes dx1

dt units (because the
derivative is the slope of t on x1). Moreover, if x1 changes 1 unit, then
z changes dz

dx1
units (because the derivative is the slope of x1 on z).
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Traces Calculus Trace Properties

An Easy Way to Remember the Chain Rule

�
�

�
�

��=

Z
Z
Z
Z
ZZ~

Z
Z
Z
Z
ZZ~

�
�

�
�

��=

t

x1 x2

z

∂x1
∂t

∂x2
∂t

∂z
∂x1

∂z
∂x2

Therefore, if t changes 1 unit, then it’s effect on z through x1 would be
the distance it travels in the x1 direction:

x1 distance =
dt

dx1
× 1 =

dt

dx1

multiplied by how much a unit change in the x1 direction changes z:

z distance through x1 =
dx1
dz
× (x1 distance) =

dx1
dz

dt

dx1
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Traces Calculus Trace Properties

An Easy Way to Remember the Chain Rule

And if t changes 1 unit, then it’s effect on z through x2 would be:

z distance through x2 =
dx2

dz
× (x2 distance) =

dx2

dz

dt

dx2

Thus, if t moves 1 unit, it moves z:
(
dx1
dz

dt
dx1

)
through x1 and it moves

z:
(
dx2
dz

dt
dx2

)
through x2, so it in total moves z:

z total distance =
dx1

dz

dt

dx1
+
dx2

dz

dt

dx2
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Traces Calculus Trace Properties

An Easy Way to Remember the Chain Rule

�
�

�
�
�

��=

Z
Z
Z
Z
Z
ZZ~

Z
Z
Z
Z
Z
ZZ~

�
�

�
�
�

��=

t

x1 x2

z

∂x1
∂t

∂x2
∂t

∂z
∂x1

∂z
∂x2

Or, as written before, to find the effect of t on z:

dz

dt
=

(
∂z

∂x1

)(
∂x1

∂t

)
+

(
∂z

∂x2

)(
∂x2

∂t

)
=

2∑
i=1

(
∂z

∂xi

∂xi
∂t

)
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Traces Calculus Trace Properties

Matrices Chain Rule

And because as our vector chain rule:

d[f(y)]
dx

=
∑
i

(
d[f(y)]
d[yi(x)]

d[yi(x)]

dx

)
(8)

We can expand upon that to obtain a chain rule for matrices.

∂[f(Y)]

∂xpq
=
∑
i

∑
j

(
∂[f(Y)]

∂[yij(xpq)]

∂[yij(xpq)]

∂xpq

)
(9)

In Equation (9) yij is a function of xpq, and we have to take the
derivative with respect to each of the elements in Y.
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Trace Derivatives Directional Derivatives

Derivatives

Here is the standard derivative definition:

Df(x) = lim
t→0

f(x+ t)− f(t)
t

The equation is a infinitesimal form of m = ∆y
∆x ; it is finding the slope

or linear approximation to this function as the distance between the
points on the x-axis goes to 0.

If there is a large distance between points on the x-axis, and if the
function is not linear, then the slope will not be a good representation
of how the function is changing. However, as the distance between
points on the x-axis goes to 0, the mini function becomes more linear.
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Trace Derivatives Directional Derivatives

Directional Derivatives: Vectors

In vector calculus, there is a similar equation.

Dwf(x) = lim
t→0

f(x+ tw)− f(x)
t

Now, our function is a surface (a scalar function of as many
dimensional inputs as there are elements in x), so the derivative will
change at a multidimensional point x based on the direction we travel
from that point.

Think of what happens if you were to stand on a mountain and turn
around in a circle: in some directions, the slope will be very steep (and
you might fall off the mountain), but in other directions, there will
barely be any slope at all.
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Trace Derivatives Directional Derivatives

Directional Derivatives: Vectors

Now w tells us which direction we want to be facing when we calculate
the derivative at a specific point x.

Dwf(x) = lim
t→0

f(x+ tw)− f(x)
t

The directional derivative is basically telling us what is the best linear
approximation of this function at a particular point if we are facing
up the mountain, down the mountain, at a 45 degree angle up the
mountain, etc.
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Trace Derivatives Directional Derivatives

Directional Derivatives: Vectors

If our x vector is two dimensional, then the function would form a
mountain in three dimensional space.

One Direction (at a given point):
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Trace Derivatives Directional Derivatives

Directional Derivatives: Vectors

A Second Direction (at the same point):

Notice how the steepness of the slope changes at both points.
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Trace Derivatives Directional Derivatives

Directional Derivatives: Vectors

First -- pick an abritrary unit length w:
wTw = 1

Second -- set up the standard, directional derivative definition:

Dwf(x) = lim
t→0

f(x+ tw)− f(x)
t

If w(i) = (0, 0, 0, 0, 1, 0, . . . , 0) where 1 is in 〈w〉i, then

Dw(i)
f(x) = lim

t→0

f(x+ tw(i))− f(x)
t

will reduce to the regular partial derivative in the ith place.
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Trace Derivatives Directional Derivatives

Directional Derivatives: Vectors

Now, if we can find a u, such that:

Dwf(x) = lim
t→0

f(x+ tw)− f(x)
t

= wTu

Then, for an arbitrary place i, in an arbitrary direction 〈w〉i:

Dw(i)
f(x) = wT

(i)u reduces to Dw(i)
f(x) = ui

where ui is the partial derivative in the ith place.

Because the ith place is arbitrary:

∂f(x)
∂x

= u
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Trace Derivatives Directional Derivatives

Directional Derivatives: Matrices

Now let Y(ij) be a Matrix such that yij = 1 in 〈Y〉ij and 0 elsewhere.

Then, extending our directional derivative definition to matrices:

DYf(X) = lim
t→0

f(X+ tY)− f(X)

t
(10)

We can conclude that

DY(ij)
f(X) = lim

t→0

f(X+ tY(ij))− f(X)

t

will “pick off” the partial derivative in the ijth place.
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Trace Derivatives Directional Derivatives

Directional Derivatives: Matrices

Now, if we can find a U, such that

DYf(X) = lim
t→0

f(X+ tY)− f(X)

t
= tr (YTU) (11)

Then, for an arbitrary place ij, in an arbitrary direction 〈Y〉ij

DY(ij)
f(X) = tr(YT

(ij)U) =
∑
j

∑
i

(yijuij) by (5)

= uij
Because the ijth place is arbitrary:

∂f(X)

∂X
= U (12)
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Trace Derivatives Directional Derivatives

Directional Derivatives: Matrices

First -- put in the form of the definition:

DYf(X) = lim
t→0

f(X+ tY)− f(X)

t

Second -- simplify until you can find the equality:

DYf(X) = tr (YTU)

Third -- remove your U, and note that:

∂f(X)

∂X
= U
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Trace Derivatives Example 1: tr(AX)

Definition

Our 1st function:

f(X) = tr(AX)

Our objective is to find:
∂f(X)

∂X
=
∂ tr(AX)

∂X

Only by simplifying the definition:

DYf(X) = lim
t→0

f(X+ tY)− f(X)

t
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Trace Derivatives Example 1: tr(AX)

Calculation

DYf(X) = lim
t→0

f(X+ tY)− f(X)

t
by (10)

= lim
t→0

tr(A[X+ tY])− tr(AX)

t

= lim
t→0

tr(AX+AtY)− tr(AX)

t

= lim
t→0

tr(tAY)

t
by (1)

= lim
t→0

tr(AY) by (2)

= tr(AY)

= tr([AY]T ) by (3)

= tr(YTAT )
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Trace Derivatives Example 1: tr(AX)

Result

So, we found that:

DYf(X) = lim
t→0

f(X+ tY)− f(X)

t

= tr(YTAT ) = tr(YTU) by (11)

And we can spot that in this case:

U = AT

And thus, by Equation (12):

U =
∂f(X)

∂X

=
∂ tr(AX)

∂X
= AT (13)
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Trace Derivatives Example 2: tr(XTAXB)

Definition

Our 2nd function:

f(X) = tr(XTAXB)

Our objective is to find:
∂f(X)

∂X
=
∂ tr(XTAXB)

∂X

Only by simplifying the definition:

DYf(X) = lim
t→0

f(X+ tY)− f(X)

t

Steven W. Nydick 46/82



Trace Derivatives Example 2: tr(XTAXB)

Calculation

DYf(X) = lim
t→0

f(X+ tY)− f(X)

t
by (10)

= lim
t→0

tr([X+ tY]TA[X+ tY]B)− tr(XTAXB)

t

= lim
t→0

tr([X+ tY]TA[X+ tY]B−XTAXB)

t
by (1)

= lim
t→0

tr(XTAtYB+ tYTAXB+ tYTAtYB)

t

= lim
t→0

tr(t[XTAYB+YTAXB+ tYTAYB])

t

= lim
t→0

[tr(XTAYB+YTAXB+ tYTAYB)] by (2)
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Trace Derivatives Example 2: tr(XTAXB)

Calculation

Continuing:

DYf(X) = lim
t→0

[tr(XTAYB+YTAXB+ tYTAYB)]

= lim
t→0

[tr(XTAYB+YTAXB)] + lim
t→0

[t tr(YTAYB)]

by (1) & (2)

= lim
t→0

[tr(XTAYB+YTAXB)]

= tr(XTAYB+YTAXB)

= tr(XTAYB) + tr(YTAXB) by (1)

= tr(BXTAY) + tr(YTAXB) by (4)
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Trace Derivatives Example 2: tr(XTAXB)

Calculation

And Finally:

DYf(X) = tr(BXTAY) + tr(YTAXB)

= tr[(BXTAY)T ] + tr(YTAXB) by (3)

= tr(YTATXBT ) + tr(YTAXB)

= tr(YTATXBT +YTAXB) by (1)

= tr(YT [ATXBT +AXB])
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Trace Derivatives Example 2: tr(XTAXB)

Result

So, we found that:

DYf(X) = lim
t→0

f(X+ tY)− f(X)

t

= tr(YT [ATXBT +AXB]) = tr(YTU) by (11)

And we can spot that in this case:

U = ATXBT +AXB

And thus, by Equation (12):

U =
∂f(X)

∂X

=
∂ tr(XTAXB)

∂X
= ATXBT +AXB (14)
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Trace Derivatives Example 3: tr(Y −1)

Definition

Our 3rd function, assuming that Y is non-singular and depends on X:

f(X) = tr(Y−1)

Our objective is to find a better expression for

∂f(X)

∂X
=
∂ tr(Y−1)

∂X

by working with previous trace derivative rules.
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Trace Derivatives Example 3: tr(Y −1)

Calculation

We have:

∂ tr(Y−1)

∂X
=
∂ tr(Y−2Y)

∂X

=
∂ tr(Y−2

c Y)

∂X
+

∂ tr(Y−2Yc)

∂X
by (7)

������������9
Zoom In

∂ tr(Y−1Y−1Yc)

∂X
=
∂ tr(YcY−1

c Y−1)

∂X
+
∂ tr(Y−1Y−1

c Yc)

∂X
by (7) & (4)

=
∂ tr(Y−1)

∂X
+
∂ tr(Y−1)

∂X
=

2∂ tr(Y−1)

∂X
(15)
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Trace Derivatives Example 3: tr(Y −1)

Result

Therefore:

∂ tr(Y−1)

∂X
=
∂ tr(Y−2

c Y)

∂X
+
∂ tr(Y−2Yc)

∂X
∂ tr(Y−1)

∂X
=
∂ tr(Y−2

c Y)

∂X
+

2∂ tr(Y−1)

∂X
by (15)

−∂ tr(Y
−1)

∂X
=
∂ tr(Y−2

c Y)

∂X

And, finally, after multiplying by (−1) on both sides:

∂ tr(Y−1)

∂X
= −∂ tr(Y

−2
c Y)

∂X
(16)

We have turned a “derivative of the trace-inverse” problem into a
standard “trace derivative” problem.
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Trace Derivatives Example 4: |Y |

Definition

Our 4th function, assuming that Y is non-singular and depends on X:

f(X) = |Y|

Our objective is to find a better expression for

∂f(X)

∂X
=
∂|Y|
∂X

by working with previous trace derivative rules and determinant rules.
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Trace Derivatives Example 4: |Y |

Determinant Review

We know from linear algebra:

Y−1 =
1

|Y|
Q where Q is the adjoint matrix

Process for calculating (qT )ij :

1 Cross out row i and column j of Y.
2 Take determinant of the smaller [(n− 1)× (n− 1)] matrix.
3 If i+ j is odd, then negate the previous step.

Thus:

|Y|I = QY (17)

Steven W. Nydick 55/82



Trace Derivatives Example 4: |Y |

Adjoint Review

Note: (qT )ij = qji does not depend on any of the elements in row i
or column j of Y.
Thus, qji does not depend on yij .

So: ∂(qjiyij)
∂yij

= qji

Based on the previous slide we have:

|Y|I = QY by (17)
|Y| 0 · · · 0

0 |Y|
...

...
... · · · . . . 0
0 · · · 0 |Y|

 =


∑

p (q1pyp1) O
. . .

. . .
O

∑
p (qnpypn)


Steven W. Nydick 56/82



Trace Derivatives Example 4: |Y |

Determinant Derivative, Part 1

Thus, given any j such that 1 ≤ j ≤ n:

|Y| =
∑
p

(qjpypj) (18)

And, for an arbitrary yij , pick the jth row of q and column of y:

∂|Y|
∂yij

=
∂
(∑

p (qjpypj)
)

∂yij
by (18)

=
∑
p

(
qjp

∂ypj
∂yij

)
= qji

∂yij
∂yij

= qji = (qT )ij (19)

Because yij was arbitrary, for an entire matrix:

∂|Y|
∂Y

= QT (20)
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Trace Derivatives Example 4: |Y |

Determinant Derivative, Part 2

Now, for an arbitrary pqth element of X (where Y depends on X):
∂|Y|
∂xpq

=
∑
i

∑
j

(
∂|Y|
∂yij

∂yij
∂xpq

)
by (9)

=
∑
i

∑
j

(
qji

∂yij
∂xpq

)
by (19)

=
∂
(∑

i

∑
j(qcjiyij)

)
∂xpq

=
∂ tr(QcY)

∂xpq
by (5)

Because xpq was arbitrary, for an entire matrix:

∂|Y|
∂X

=
∂ tr(QcY)

∂X
(21)
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Trace Derivative Applications Application 1: Least Squares

Definition

Let’s say that we have
A = X+E

where A is the observation matrix, E is a matrix of stochastic
fluctuations with a mean of 0, and X is our approximation to A.

In Least Squares, our objective is to minimize the
sum of squared errors:

SSE = e2
11 + e2

12 + · · ·+ e2
1n + e2

21 + · · ·+ e2
2n + · · ·+ e2

mn

=
∑
i

∑
j

e2
ij

=
∑
i

∑
j

(eijeij)

= tr(ETE) by (5)
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Trace Derivative Applications Application 1: Least Squares

Definition

If we have no constraints on X, then we are, equivalently, minimizing:

SSE = tr(ETE) = tr[(A−X)T (A−X)]
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Trace Derivative Applications Application 1: Least Squares

Calculation

A minimization:

∂(SSE)

∂X
=
∂ tr(ETE)

∂X
=
∂ tr[(A−X)T (A−X)]

∂X

=
∂ tr(ATA−ATX−XTA+XTX)

∂X

=
∂[tr(ATA)− tr(ATX)− tr(XTX) + tr(XTX)]

∂X
by (1)

=
∂ tr(ATA)

∂X
− ∂ tr(ATX)

∂X
− ∂ tr(XTA)

∂X
+
∂ tr(XTX)

∂X

= 0− ∂ tr(ATX)

∂X
− ∂ tr(XTA)

∂X
+
∂ tr(XTX)

∂X
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Trace Derivative Applications Application 1: Least Squares

Calculation

Continuing:

∂(SSE)

∂X
= −∂ tr(A

TX)

∂X
− ∂ tr(XTA)

∂X
+
∂ tr(XTX)

∂X

= −A− ∂ tr(ATX)

∂X
+
∂ tr(XTX)

∂X
by (13) & (3)

= −A−A+
∂ tr(XTX)

∂X
by (13)

= −A−A+
∂ tr(XT IXI)

∂X
= −A−A+ [ITXIT + IXI] by (14)
= −A−A+ [X+X] = −2A+ 2X (22)
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Trace Derivative Applications Application 1: Least Squares

Result

As in any Least Squares problem, we should set our derivative equal to
0 in order to find the minimum of the function.

∂(SSE)

∂X
= −2A+ 2X = 0

2X = 2A

Â = X = A

Surprisingly, without any constraints on X, the best approximation of
A is A itself.

Oh, the things you learn in calculus ¨̂ !
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Trace Derivative Applications Application 2: Restricted Least Squares (X = XT )

LaGrange Multipliers

Pretend you have a function:

f(X)

To maximize or minimize less than mn restraints equivalent to

h(x11, . . . , xmn)ij = 0

use LaGrange Multipliers uij (one for each restraint), and set

g(X) = f(X) +
∑
i

∑
j

(uijhij) (23)

Finally, take the derivative with respect to X, set equal to 0, and solve.
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Trace Derivative Applications Application 2: Restricted Least Squares (X = XT )

Definition

We still want to find an X that minimizes the SSE to best
approximate A; however, we are now subject to the constraint that X
is a Symmetric Matrix.

X Symmetric Means:

X = XT

X−XT = 0

The Recipe:
1 We have our equation to minimize: tr(ETE).
2 We have our constraint: H = X−XT = 0.
3 Put in LaGrange multiplier form.
4 Take the derivative.
5 Set the derivative equal to 0.
6 Solve for X.
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Trace Derivative Applications Application 2: Restricted Least Squares (X = XT )

Calculation

First -- set up the problem:

g(X) = f(X) +
∑
i

∑
j

(uijhij) by (23)

= tr(ETE) + tr(UTH) by (5)

= tr(ETE) + tr[UT (X−XT )]

= tr(ETE) + tr(UTX)− tr(UTXT ) by (1)

= tr(ETE) + tr(UTX)− tr(UX) by (3) & (4)
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Trace Derivative Applications Application 2: Restricted Least Squares (X = XT )

Calculation

Second -- take the derivative:

∂g(X)

∂X
=
∂[tr(ETE) + tr(UTX)− tr(UX)]

∂X

=
∂ tr(ETE)

∂X
+
∂ tr(UTX)

∂X
− ∂ tr(UX)

∂X

= −2A+ 2X+
∂ tr(UTX)

∂X
− ∂ tr(UX)

∂X
by (22)

= −2A+ 2X+U−UT by (13)
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Trace Derivative Applications Application 2: Restricted Least Squares (X = XT )

Calculation

Third -- set the derivative equal to 0:

∂g(X)

∂X
= −2A+ 2X+U−UT = 0

2X = 2A+UT −U

X = A+
UT −U

2

However, now note that: X = XT

XT =

(
A+

UT −U
2

)T

XT = AT +
U−UT

2
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Trace Derivative Applications Application 2: Restricted Least Squares (X = XT )

Result

Fourth -- add XT to both sides and solve for X:

X+XT = A+
UT −U

2
+AT +

U−UT

2

X+X = A+AT +
UT −U

2
− UT −U

2

2X = A+AT

Â = X =
A+AT

2

Therefore, to approximate A with a Symmetric Matrix, the best
matrix (according to the Least Squares Criterion) is the average of the
elements of A and the elements of AT .
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Trace Derivative Applications Application 3: MLE Factor Analysis (LRC)

Definition

The function we want to maximize:

u = |U−1(R− FFT )U−1|

1 R is a correlation matrix.
diag(R) = I

2 F is a factor pattern matrix of uncorrelated common factors.
3 U2 is a covariance matrix of uncorrelated unique factors.

U2 = diag(U2) = I− diag(FFT )
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Trace Derivative Applications Application 3: MLE Factor Analysis (LRC)

Definition

The function we want to maximize:

u = |U−1(R− FFT )U−1|

The function u is a likelihood ratio criterion for a test of independence
after the common factors have been partialed out of the covariance
matrix.

U−1(R− FFT )U−1 should be close to I, so u should be close to 1.

We want to find the F (and consequently the U2) that results in a
determinant as close to 1 as possible.
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Trace Derivative Applications Application 3: MLE Factor Analysis (LRC)

Definition

To make the derivatives simpler, let:

u1 = |U−2| and u2 = |R− FFT |

Note that:

u1u2 = |U−2||R−FFT | = |U−1||R−FFT ||U−1| = |U−1(R−FFT )U−1|

Thus, we can use the product rule to find the derivative:

∂u

∂F
=
∂(u1u2)

∂F

=
∂u1

∂F
u2 + u1

∂u2

∂F
by (7)
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Trace Derivative Applications Application 3: MLE Factor Analysis (LRC)

Calculation: ∂u1
∂F

Let’s find the derivative of the first part.

∂u1

∂F
=
∂|U−2|
∂F

=
∂|U2|−1

∂F
(by determinant rules)

=
∂ tr(|U2|−1)

∂F
(since tr(|X|) = |X|)

= −tr(|U2|−2
c |U2|)
∂F

by (16)

= −|U2|−2∂|U|2

∂F
(24)

Our next objective is to find the derivative of the highlighted part.
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Trace Derivative Applications Application 3: MLE Factor Analysis (LRC)

Calculation: ∂u1
∂F

Continuing:

∂|U|
∂F

=
∂|I− diag(FFT )|

∂F
(by definition)

=

∂ tr
(
Qc[I− diag(FFT )]

)
∂F

by (21)

=
∂ tr(Qc)

∂F
− ∂ tr[Qc diag(FF

T )]

∂F
by (1) & (2)

= 0− ∂ tr[Qc diag(FF
T )]

∂F

= −∂ tr[Qc diag(FF
T )]

∂F
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Trace Derivative Applications Application 3: MLE Factor Analysis (LRC)

Calculation: ∂u1
∂F

Based on (21), Qc is the Adjoint of [I− diag(FFT )] = U2.

Therefore:

|U2|−1Qc = (U2)−1 by (17)

Qc = |U2|(U−2)

Because U2 is a diagonal matrix, Qc = |U2|(U−2) is a diagonal matrix.

And:

∂|U|
∂F

= −∂ tr[Qc diag(FF
T )]

∂F
= −∂ tr[diag(QcFF

T )]

∂F
= −∂ tr(QcFF

T )

∂F

Because the trace only operates on the diagonal, the trace of the
diagonal of a matrix is the same as the trace of the original matrix.
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Trace Derivative Applications Application 3: MLE Factor Analysis (LRC)

Calculation: ∂u1
∂F

Continuing:

−∂ tr(QcFF
T )

∂F
= −∂ tr(F

TQcFI)
∂F

by (4)

= −(QTFIT +QFI) by (14)

= −(QT +Q)F
= −2QF (Q is symmetric)

= −2|U2|U−2F by (17)

And, thus:
∂u1

∂F
= −|U2|∂|U|

2

∂F
by (24)

= −|U2|−2(−2|U2|U−2F)

= 2|U2|−1U−2F

= 2|U−2|U−2F (25)
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Trace Derivative Applications Application 3: MLE Factor Analysis (LRC)

Calculation: ∂u2
∂F

Now, let’s find the derivative of the second part.

∂u2

∂F
=
∂|R− FFT |

∂F

=
∂ tr[Qc(R− FFT )]

∂F
by (21)

=
∂ tr(QcR)

∂F
− ∂ tr(QcFF

T )

∂F
by (1) & (2)

= 0− ∂ tr(FTQcFI)
∂F

by (4)

= −(QT +Q)F by (14)
= −2QF (Q is symmetric)

= −2|R− FFT |(R− FFT )−1F (26)
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Trace Derivative Applications Application 3: MLE Factor Analysis (LRC)

Calculation: Entire Thing

Putting the pieces together:

∂u

∂F
=
∂u1

∂F
u2 + u1

∂u2

∂F

Which implies that

∂u

∂F
= (2|U−2|U−2F)|R− FFT |

+|U−2|(−2|R− FFT |(R− FFT )−1F)
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Trace Derivative Applications Application 3: MLE Factor Analysis (LRC)

Calculation: Finding Maximum

To find the maximum of this function, we must set it equal to 0 and
solve.

0 = 2|U−2|(U−2F)|R− FFT | − 2|U−2||R− FFT |(R− FFT )−1F

0 = 2|U−2||R− FFT |(U−2F− (R− FFT )−1F)

0 = U−2F− (R− FFT )−1F
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Trace Derivative Applications Application 3: MLE Factor Analysis (LRC)

Calculation: Finding Maximum

Finishing the calculation:

0 = U−2F− (R− FFT )−1F

(R− FFT )−1F = U−2F

F = (R− FFT )U−2F

F = RU−2F− FFTU−2F

RU−2F− F = FFTU−2F

(RU−2 − I)F = F(FTU−2F) (27)
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Trace Derivative Applications Application 3: MLE Factor Analysis (LRC)

Result

Based on the previous slide, we have

(RU−2 − I)F = F(FTU−2F)

Let Λ = (FTU−2F) be diagonal. Then

(RU−2 − I)(f1, f2, . . . , fn) = (f1, f2, . . . , fn)


λ1 0 · · · 0

0 λ2
...

...
... · · · . . . 0
0 · · · 0 λn


(RU−2 − I)(f1, f2, . . . , fn) = (f1λ1, f2λ2, . . . , fnλn)

(RU−2 − I)(f1, f2, . . . , fn) = (λ1f1, λ2f2, . . . , λnfn)

is an implicit eigenproblem.
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