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INTRODUCTION NoTaTION

NOTATION

A: A matrix

A.: A matrix held constant

x: A vector

y: A scalar (or a scalar function)

xT or X' The transpose of x or X
x;5: The element in the ith row and jth column of X
(wT)Z-j: The element in the ith row and jth column of X*

%—l{: A matrix with elements

g—;’(: A matrix with elements

9yij
oz
Oy

0z

(x); or (X);;: The ith or ijth place of x or X
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INTRODUCTION NoTaTION

GRADIENT, JACOBIAN, HESSIAN

A Gradient is the derivative of a scalar with respect to a vector.

() 15 - [3)

If we have the function: f(x) = 2z122 + l’% + xlcc%, then the Gradient is

=5 ] 152

= [29:2 + m% 2x1 + 2z 2x1x3]T
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INTRODUCTION NoTaTION

GRADIENT, JACOBIAN, HESSIAN

A Jacobian is a the derivative of a vector with respect to a transposed vector.

5 - 14

0x1 o0xy,

] - [52]

If we have the function

f(x) = [303 + 22 (1) sin(ez)]”

OF(x) (G”fl ; )

Then the Jacobian is
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INTRODUCTION NoTaTION

GRADIENT, JACOBIAN, HESSIAN

The Hessian is derivative of a Gradient with respect to a transposed vector.

) - [

0%f(x)

OxOxT

) o

n

Because our above Gradient is

9f(x)

DA S [21’2 + $§ 2x1 + 2o 2$1$3]T

ox
219 (5 5
OxoxT 9

T3 0 2$1

The Hessian would be
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INTRODUCTION HisTory oF PAPER

SIMPLIFYING CLASSES OF MATRIX DERIVATIVES

History of Schéneman’s paper:

@ Wrote it while a post doc at UNC.
@ Originally submitted it to Psychometrika in 1965.
@ Editor mildly criticized paper.

@ Compliment: reformulate certain problems (Lagrange multipliers)
into interesting form (traces).
® Complaint: why would we want to do that?

@ Revised paper, resubmitted paper, but editorship changed hands,
and took them almost a year to respond (asking for another
revision).

® The new editor told him that a reviewer said: “nothing wrong with
paper but not too important”.
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INTRODUCTION HisTory oF PAPER

SIMPLIFYING CLASSES OF MATRIX DERIVATIVES

History of Schéneman’s paper:

@ Later learned that the original delay was caused by a statistician
with expertise in matrix derivatives who thought that the paper
would be published eventually.

@ The paper was published eventually ... 20 years later in MBR.

@ Wrote the article “Better Never than Late: Peer Review and the
Preservation of Prejudice” in 2001.

STEVEN W. NYDICK



INTRODUCTION HisTory oF PAPER

SIMPLIFYING CLASSES OF MATRIX DERIVATIVES

There are two beneficial properties of Schéneman’s paper:

© Derivatives are always in matrix form.

@ No need for Dummy Matrices.

But, uses traces, and thus, uses trace properties.

So ... A Review of Traces/Trace Properties:
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TRACES ALGEBRAIC TRACE PROPERTIES

WHAT IS A TRACE?

Definition:
tr (Y) = Z (yii), Y is square

%

OK - that’s simple, but what does that mean?

Well, take a square matrix and add up the diagonal elements

A=|: - ], wr(A)=an+ax+ - +am
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TRACES ALGEBRAIC TRACE PROPERTIES

LINEARITY OF TRACES

The MOST important aspect of traces (for our later derivations):

tr: M(R)" — R! is linear

Thus:
tr (A+B)=tr(A)+tr(B) (1)
and
tr (cA) =c tr (A) (2)
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TRACES ALGEBRAIC TRACE PROPERTIES

TRANSPOSITION OF DEPENDENT VARIABLE

Traces have SEVERAL OTHER important properties.

Property 1: Transposition of Dependent Variable

We hayve:

tr (Y) = tr (Y7) (3)

Thus:

otr (Y)  Otr (YT)
oxX X
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TRACES ALGEBRAIC TRACE PROPERTIES

CycLIiC PERMUTATION

Property 2: Cyclic Permutation

We hayve:
tr (AB) = tr (BA) (4)
Why? Well, start from the left of Equation (4).
aiy -+ Qim bi1 -+ by
tr (AB) = tr
Apl *°° Qpm bml ce bmn
m m
=ai1bir + - 4+ armbm1 + Z (ag2ibi2) + -+ + Z (anibin)
i=1 i=1
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TRACES ALGEBRAIC TRACE PROPERTIES

CycLIiC PERMUTATION

And also start from the right of Equation (4).

bin -+ bin air - Gim
tr (BA) =tr
bml te bmn nl1 - Opm
= 3 S (bigage) = S0 S (bygag) =YY (agbij)
j=1i=1
_ tr (AB)
So:

otr (AB) _ otr (BA)
ox X
Rotating the order does not change the trace of square matrices.
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TRACES ALGEBRAIC TRACE PROPERTIES

CycLIiC PERMUTATION

A consequence of the last derivation:

@ Let U and H have the same dimensions.

e If you want to multiply paired entries (e.g. u;jh;;) and add all the

multiplications:
o Flip one of the matrices, multiply, and take the trace of that
multiplication.
m n m n
DD (wghig) =" ((UT)jihij> = tr (U'H) (5)
=1 i=1 =1 i=1
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TRACES CaLcuLus TRACE PROPERTIES

TRANSPOSITION OF INDEPENDENT VARIABLE

Calculus Property 1: Transposition of Independent Variable

By definition:

otr (Y)  0tr (Y)
8X B 81‘1']'

si=1,...,n5=1,...,m

where 831(_‘_{) is what we put in the 7jth place in our derivative matrix.
ij

Thus:

otr(Y) ot (Y) . o (ot (Y)\"
oxXT) ~ ouy, ,(yl,...,m,zl,...,n)( 5% ) (6)

because atar )
T

is what we put in the ijth place in our derivative matrix.

Ji
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TRACES CaLcuLus TRACE PROPERTIES

TRANSPOSITION OF INDEPENDENT VARIABLE

Deriving with respect to a transposed variable replaces each entry in
the new matrix with the derivative of the corresponding
transposed component.

Replacing every entry with the derivative of the transposed component
— Transposing the entire matrix of partial derivatives.
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TRACES CaLcuLus TRACE PROPERTIES

PRrRODUCT RULE

Calculus Property 2: Product Rule
An illustration of the product rule:

do

D)

ulx) du
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TRACES CaLcuLus TRACE PROPERTIES

PropucT RULE

Calculus Property 2: Product Rule

Based on the previous illustration:

() w+w ()

In this case, v and v are scalar functions of z.

Now, we want to translate this to matrices and traces of matrices:

Pick any row u; and any column v; from U and V.
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TRACES CaLcuLus TRACE PROPERTIES

PropucT RULE

If we take the derivative of the matrix product with respect to a scalar:
o(UV)

ox
we find that the i,jth place in our new derivative matrix is

8(ugv,j) ~ O(uijrvry + -+ F UinUnj)

ox ox
_ O(uirviy) A(WinVnj)
N ox Tt ox
. Buﬂ 4w 8v1j T i 8Um 4w 81)”]'
- Oz U1y Tt ox ox Unj T tin ox
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TRACES CaLcuLus TRACE PROPERTIES

PropucT RULE

So, now we want to collect terms:

8(113?V,j) B aullv T 8111] i n 8umv . %
or oz 7 1 ox ox " " Ox
= (P Qi N (0 2y, 20
“\ox ¥ ox 1 ox " Ox
= or TN,
And because our element is arbitrary, we can generalize:
ouv) ou oV
= V4+UZ
ox ox ox
d(UV,)  9(U.V)
= 7
ox * ox Q
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TRACES CaLcuLus TRACE PROPERTIES

PropucT RULE

There are two notes on the product rule:

Note 1: For the product rule to make sense, both U and V should be
functions of X.

For the Univariate Case, let u = 2% + 2 and v = 2z + sin(x). Then:

(T ww (i)

= (2z) (25{: + sin(x)) + (2 +2) (2 + cos(x))
= 42”4 2z sin(z) + 222 + 4 + 22 cos(x) 4 2 cos(x)
= z? (6 + cos(:n)) + 2(:E sin(z) + COS(:E)) +4

We will discuss the multivariate case later.
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TRACES CaLcuLus TRACE PROPERTIES

PropucT RULE

There are two notes on the product rule:

Note 2: We can put V. and U, inside the derivative funtion, but they
are now constants with respect to X, even if they are functions of X.

For the Univariate Case, let v = 2° + In(z) and v = 322. Then:

d(uve) d [(1‘3 + ln(az)>(3x2)6}

dx dx
1
= (322 + = ) (322
<T—|—x>($)

=9z + 32

We will discuss the multivariate case later.
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TRACES CaLcuLus TRACE PROPERTIES

MULTIDIMENSIONAL CHAIN RULE

Calculus Property 3: Chain Rule
Let:
z = 2x% + x1 cos(w2)

Then, by definition:

0z
% _ e _ 4x1 + cos(x2)
ox 0z )
[(‘3;172] —x1 sin(z2)

Our partial derivative with respect to z is 4x1 4 cos(x3), and our
partial derivative with respect to x9 is —z sin(xz). Furthermore, these
go in the respective parts of our derivative matrix (replacing x; and x2).
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TRACES CaLcuLus TRACE PROPERTIES

MULTIDIMENSIONAL CHAIN RULE

Now if:

xr1 = 3t and To =1
Then:

fl—’z is now the derivative with respect to ¢t accounted for by x; and the

derivative with respect to ¢t accounted for by xs.
And we account for:

4(3) + cos(] 2L by a

by T2
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TRACES CaLcuLus TRACE PROPERTIES

MULTIDIMENSIONAL CHAIN RULE

Thus:

dz OzTﬁx_i 0z dz;
dt — \ox) ot = \0z; ot

= [12t + cos(t)](3) + [—(3t) sin(t)](1)
= 36t + 3 cos(t) — 3tsin(t)

But: z = 222 + 1 cos(z2) = 2(3t)% + (3t) cos(t) = 18t + 3t cos(t)

So, another way of getting the same result:

dz _ d[18* 4 3t cos(t)]
dt dt
= 36t + 3t[—sin(t)] + 3 cos(t) = 36t + 3 cos(t) — 3t sin(t)
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TRACES CaLcuLus TRACE PROPERTIES

AN EASsY WAY TO REMEMBER THE CHAIN RULE

Because effects are slopes and slopes are derivatives, writing out a path
diagram from t to z would have the derivatives along the paths.

t
ox1 Jza

ot ot

z

The total effect of ¢ on z is found by multiplying the effects down each
path and summing the total effects across paths.
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TRACES CaLcuLus TRACE PROPERTIES

AN EASsY WAY TO REMEMBER THE CHAIN RULE

ox1 Jza
ot ot

z

For example, let’s find the total effect of a 1 unit change in ¢ on z.
Well, if ¢ changes 1 unit, then z1 changes % units (because the
derivative is the slope of t on x1). Moreover, if 21 changes 1 unit, then

z changes j—; units (because the derivative is the slope of x; on z).

STEVEN W. NYDICK



TRACES CaLcuLus TRACE PROPERTIES

AN EASsY WAY TO REMEMBER THE CHAIN RULE

ox1 Ox2

ot ot

z

Therefore, if ¢t changes 1 unit, then it’s effect on z through x; would be

the distance it travels in the x; direction:
. dt dt
zp distance = — x 1 = —
T drq

multiplied by how much a unit change in the x; direction changes z:

dx
z distance through z; = d—l X (x1 distance) = — —
z
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TRACES CaLcuLus TRACE PROPERTIES

AN EASsY WAY TO REMEMBER THE CHAIN RULE

And if t changes 1 unit, then it’s effect on z through zs would be:

dz
z distance through xo = d—Q X (x9 distance) = ——
z

Thus, if ¢t moves 1 unit, it moves z: (%d%) through x; and it moves

z: (4224t ) through z9, so it in total moves z:
dz dxo ’

z total distance = dry dt + dzy db
- dz dxy dz dxo
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TRACES CaLcuLus TRACE PROPERTIES

AN EASsY WAY TO REMEMBER THE CHAIN RULE

t
Oz Ozy
ot ot
1

X T2

Oz
oz

z

Or, as written before, to find the effect of ¢ on z:

de (02 (), (02 (0m) _§
dt — \0x1) \ ot Ory ) \ Ot ) &

STEVEN W. NYDICK



TRACES CaLcuLus TRACE PROPERTIES

MATRICES CHAIN RULE

And because as our vector chain rule:

dif(y)l _ dlf(y)] dlyi(=)]
dx _Z<d[yi(:v)] dx )

i
We can expand upon that to obtain a chain rule for matrices.

RSN vt o B

Olyi; qu

In Equation (9) y;; is a function of z,4, and we have to take the
derivative with respect to each of the elements in Y.
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TRACE DERIVATIVES DIRECTIONAL DERIVATIVES

DERIVATIVES

Here is the standard derivative definition:

D (e) — tim 1D = 5O

t—0 t

The equation is a infinitesimal form of m = ﬁ—i’:; it is finding the slope
or linear approximation to this function as the distance between the
points on the z-axis goes to 0.

If there is a large distance between points on the z-axis, and if the
function is not linear, then the slope will not be a good representation
of how the function is changing. However, as the distance between
points on the z-axis goes to 0, the mini function becomes more linear.

STEVEN W. NYDICK



TRACE DERIVATIVES DIRECTIONAL DERIVATIVES

DIRECTIONAL DERIVATIVES: VECTORS

In vector calculus, there is a similar equation.

D) = g 1090 = 19

Now, our function is a surface (a scalar function of as many
dimensional inputs as there are elements in x), so the derivative will
change at a multidimensional point x based on the direction we travel
from that point.

Think of what happens if you were to stand on a mountain and turn
around in a circle: in some directions, the slope will be very steep (and
you might fall off the mountain), but in other directions, there will
barely be any slope at all.
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TRACE DERIVATIVES DIRECTIONAL DERIVATIVES

DIRECTIONAL DERIVATIVES: VECTORS

Now w tells us which direction we want to be facing when we calculate
the derivative at a specific point x.

D) = iy 109 = 19

The directional derivative is basically telling us what is the best linear
approximation of this function at a particular point if we are facing
up the mountain, down the mountain, at a 45 degree angle up the
mountain, etc.
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TRACE DERIVATIVES

DIRECTIONAL DERIVATIVES

DIRECTIONAL DERIVATIVES: VECTORS

If our x vector is two dimensional, then the function would form a
mountain in three dimensional space.

One Direction (at a given point):

=] AnimatedD-1 00—————=HHE

Z
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TRACE DERIVATIVES DIRECTIONAL DERIVATIVES

DIRECTIONAL DERIVATIVES: VECTORS

A Second Direction (at the same point):

0 =———AnimatedD-1——————HIB

iz

Notice how the steepness of the slope changes at both points.
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TRACE DERIVATIVES DIRECTIONAL DERIVATIVES

DIRECTIONAL DERIVATIVES: VECTORS

First -- pick an abritrary unit length w:

wiw=1

Second -- set up the standard, directional derivative definition:

Do)ty 10 M) = 100

If wi) =(0,0,0,0,1,0, ... ,0) where 1 is in (w);, then

+twp) —
Dw(,.>f(X)=}i§(1)f(x W;)) f(x)

will reduce to the regular partial derivative in the ith place.
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TRACE DERIVATIVES DIRECTIONAL DERIVATIVES

DIRECTIONAL DERIVATIVES: VECTORS

Now, if we can find a u, such that:

Then, for an arbitrary place i, in an arbitrary direction (w);:

Dw(i)f(x) = w%;.)u reduces to Dw(i)f(x) = Uu;

where wu; is the partial derivative in the ith place.

Because the ith place is arbitrary:

of(x)
0x

STEVEN W. NYDICK




TRACE DERIVATIVES DIRECTIONAL DERIVATIVES

DIRECTIONAL DERIVATIVES: MATRICES

Now let Y ;;) be a Matrix such that y;; = 1 in (Y);; and 0 elsewhere.

Then, extending our directional derivative definition to matrices:

Dy s (%) = iy LK+ 00 =S

We can conclude that

X +tYn) — f(X
Dy, () = tim T2 X0 = FX)

will “pick off” the partial derivative in the 7jth place.
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TRACE DERIVATIVES DIRECTIONAL DERIVATIVES

DIRECTIONAL DERIVATIVES: MATRICES

Now, if we can find a U, such that

Dy f(X) = iy L0~ 1K)

= tr (YIU) (11)

Then, for an arbitrary place ij, in an arbitrary direction (Y);;
DY(Z-]-)f( ) = tr( Y(z])U ZZ yljul] by (5)

Because the ¢5th place is arbitrary:

9f(X)

= U (12)
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TRACE DERIVATIVES DIRECTIONAL DERIVATIVES

DIRECTIONAL DERIVATIVES: MATRICES

First -- put in the form of the definition:

Second -- simplify until you can find the equality:

Dy f(X) =tr (YTU)

Third -- remove your U, and note that:

9f(X)

ox Y
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N:INeI BV NS ExAaMPLE 1: tr(AX)

DEFINITION

Our 1st function:

F(X) = tr(AX)

Our objective is to find:

0f(X)  dtr(AX)

0X 0X

Only by simplifying the definition:

Dy f(X) = iy LK+ 00 I
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N:INeI BV NS ExAaMPLE 1: tr(AX)

CALCULATION

STEVEN W. NYDICK

fX+1Y) - [(X)

Dy f(X) = lim t by (10)
— lim tr(A[X 4+ tY]) — tr(AX)
t—0 t
— lim tr(AX + AtY) — tr(AX)
t—0 t
. tr(tAY)
- iy b ()




N:INeI BV NS ExAaMPLE 1: tr(AX)

RESULT

So, we found that:
fX+tY) - f(X)

Dy f(X) = lim ;
=tr(YTAT) = tr(YTU) by (11)

And we can spot that in this case:

U=A"
And thus, by Equation (12):
_9f(X)
v oX
Jtr(AX) T
=—ax - A (13)
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UNINCIMPIINVNIWI ExampLE 2: tr(X~ AXB)

DEFINITION

Our 2nd function:
f(X) = tr(XTAXB)
Our objective is to find:

of(X) ot (XTAXB)
oxX 0X

Only by simplifying the definition:

_ o JXHEY) — f(X)
Dy f(X) = lim ;

STEVEN W. NYDICK




UNINCIMPIINVNIWI ExampLE 2: tr(X~ AXB)

CALCULATION

fX+tY) - f(X)

Dy f(X) = lim ; by (10)
o X tY]TA[X 4+ tY]B) — tr(XTAXB)
— 50 t
tr([X + tY]TA[X +tY]|B — XT'AXB
_ iy SIX A YT AX + Y] )y
t—0 t
Ly tr(XTAtYB +tYTAXB +tYTAtYB)
— 5% t
i tr(tXTAYB + YTAXB +tYTAYB])
150 t

= lim [tr(XTAYB + Y'AXB +tY'AYB)] by (2)
*>
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UNINCIMPIINVNIWI ExampLE 2: tr(X~ AXB)

CALCULATION

Continuing:

Dy f(X) = lim[tr(XT"AYB + Y'AXB + tY'AYB)]
t—0
= lim[tr(XTAYB 4+ YTAXB)] + lim[t tr(YT AYB)]
t—0 t—0

by (1) & (2)
= %in%[tr(XTAYB +YTAXB)]
—
= tr(XTAYB + YT AXB)
= tr(XTAYB) + tr(Y'AXB) by (1)
= tr(BXTAY) + tr(YTAXB) by (4)
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UNINCIMPIINVNIWI ExampLE 2: tr(X~ AXB)

CALCULATION

And Finally:

Dy f(X) = tr(BXTAY) + tr(Y/ AXB)
= tr[(BXTAY)"] + tr(YTAXB) by (3)
= tr(YPATXBT) + tr(YT AXB)
= tr(YTATXBT + YT AXB) by (1)
= tr(Y'[ATXBT + AXB])

STEVEN W. NYDICK



UNINCIMPIINVNIWI ExampLE 2: tr(X~ AXB)

RESULT

So, we found that:
fX+1Y) - f(X)

Dy f(X) = lim ;
= tr(Y'[ATXB? + AXB]) = tr(Y'U) by (11)

And we can spot that in this case:
U =A"XB” + AXB

And thus, by Equation (12):

== - ATXBT + AXB (14)
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N VNI W BIo NN Y I EXAMPLE 3: tr(Yﬁl)

DEFINITION

Our 3rd function, assuming that Y is non-singular and depends on X:

Our objective is to find a better expression for

of(X) 8tr(Y_1)

0X 0X

by working with previous trace derivative rules.
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N VNI W BIo NN Y I EXAMPLE 3: tr(Yﬁl)

CALCULATION

We hayve:

otr(Y™!)  otr(Y?Y)
ox 0X

Cot(Y,PY) | otr(Y?Y,)
T ox | X by (7)
i
otr(Y 'Y 'Y, | otr(Y. Y, 'Y ™) N otr(Y 'Y 1Y)
0X B oX oX
by (7) & (4)
Cotr(Y'h) ote(Yh)  20tr(YTY)
D ) S (15)
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N VNI W BIo NN Y I EXAMPLE 3: tr(Yﬁl)

RESULT

Therefore:

otr(Y™h)  otr(Y.?Y)  Otr(Y *Y,)

X . ox T ox
otr(Y™')  otr(Y,?Y)  20tr(Y ')
X ox X by (15)
Cote(YTh)  aur(YPY)
ox oX
And, finally, after multiplying by (—1) on both sides:
vl V=2
otr(Y ™) __8t1(YC Y) (16)

ox 0X

We have turned a “derivative of the trace-inverse” problem into a
standard “trace derivative” problem.
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TRACE DERIVATIVES [EEDPVNVIJARERD gl

DEFINITION

Our 4th function, assuming that Y is non-singular and depends on X:

fX) =1Y|

Our objective is to find a better expression for
Of(X) _ Y|
0X 0X

by working with previous trace derivative rules and determinant rules.
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TRACE DERIVATIVES [EEDPVNVIJARERD gl

DETERMINANT REVIEW

We know from linear algebra:

1

Y'=
Y|

where Q is the adjoint matrix

Process for calculating (¢7);;:

@ Cross out row ¢ and column 5 of Y.
@ Take determinant of the smaller [(n — 1) x (n — 1)] matrix.
© If i + j is odd, then negate the previous step.

Thus:

YI=QY (17)
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TRACE DERIVATIVES [EEDPVNVIJARERD gl

ADJOINT REVIEW

e Note: (qT)ij = ¢ji does not depend on any of the elements in row i
or column j of Y.

e Thus, ¢;; does not depend on y;;.

o So: 2@wu)

Yij = Yji

Based on the previous slide we have:
YII= QY by (17)

’Y’ 0 - 0 Zp (QIpypl) O
0 Y| : ’

STEVEN W. NYDICK



TRACE DERIVATIVES [EEDPVNVIJARERD gl

DETERMINANT DERIVATIVE, PART 1

Thus, given any j such that 1 < j7 < n:

Y= (4p¥ps) (18)

p

And, for an arbitrary ;;, pick the jth row of q and column of y:

oy| 9 (%, @)

= by (18
D01 e y (18)
oy OYii
= Z < Tjp 8pr> = dji 5?;2’ = qji = (q")ij (19)
Because y;; was arbitrary, for an entire matrix:

oYl _ A1
20
v =Q (20)
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TRACE DERIVATIVES [EEDPVNVIJARERD gl

DETERMINANT DERIVATIVE, PART 2

Now, for an arbitrary pgth element of X (where Y depends on X):
— = - by (9
Ipg ; ; (ayij O v )
( Oyij
=22\
i j 8qu
9 <Zz Zj(QCjiyij))

) by (19)

0xpg
ot Y
- 90Q:Y) by (5)
Tpq
Because x,, was arbitrary, for an entire matrix:
oY ot Y

0X 0X
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TRACE DERIVATIVE APPLICATIONS APPLICATION 1: LEAST SQUARES

DEFINITION

Let’s say that we have
A=X+E

where A is the observation matrix, E is a matrix of stochastic
fluctuations with a mean of 0, and X is our approximation to A.

In Least Squares, our objective is to minimize the
sum of squared errors:

SSE =efy+ely+ - tefy+ e+ teq,+oten,

-y
= ZZ(%‘%’)

= tr(ETE) by (5)
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TRACE DERIVATIVE APPLICATIONS APPLICATION 1: LEAST SQUARES

DEFINITION

If we have no constraints on X, then we are, equivalently, minimizing:

SSE = tr(ETE) = tr[(A — X)T (A — X)]
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TRACE DERIVATIVE APPLICATIONS APPLICATION 1: LEAST SQUARES

CALCULATION

A minimization:

9(SSE) _ 0tr(E'E) _ dtr[(A — X)"(A — X)]

X X X
_ 0tr(ATA - ATX - XTA + XTX)
B oX
Iltr(ATA) — tr(ATX) — tr(XTX) + tr(XTX)]
= 5% by (1)
_ou(ATA) ou(ATX)  ou(XTA) N 2tr(XTX)
X X X X
o ou(ATX)  otr(XTA) N 2 tr(XTX)
X X X
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TRACE DERIVATIVE APPLICATIONS APPLICATION 1: LEAST SQUARES

CALCULATION

Continuing:

d(SSE)  9w(ATX) 9wr(XTA) N 2 tr(XTX)

X X X X
B otr(ATX)  otr(XTX)
=—A-——t+ % by (13) & (3)
B dtr(XTX)
_ 0 tr(XTTXI)
=TACAT TR
=—A - A4 [I"XT7 4 IXT] by (14)
=-A-A+[X+X]=-2A+2X (22)
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TRACE DERIVATIVE APPLICATIONS APPLICATION 1: LEAST SQUARES

RESULT

As in any Least Squares problem, we should set our derivative equal to
0 in order to find the minimum of the function.

d(SSE)
TR _ _9A 42X =
X + 0
29X = 2A
A=X=A

Surprisingly, without any constraints on X, the best approximation of
A is A itself.

Oh, the things you learn in calculus 2!
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RN D) 3V N NG RN B (NNl A PPLICATION 2: RESTRICTED LEAST SQUARES (X = XT)

LAGRANGE MULTIPLIERS

Pretend you have a function:
f(X)
To maximize or minimize less than mn restraints equivalent to

h(.%‘n, . ,ZL‘mn)Z’j =0

use LaGrange Multipliers u;; (one for each restraint), and set

g(X) = F(X)+ D> (uijhis) (23)
i g

Finally, take the derivative with respect to X, set equal to 0, and solve.
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RN D) 3V N NG RN B (NNl A PPLICATION 2: RESTRICTED LEAST SQUARES (X = XT)

DEFINITION

We still want to find an X that minimizes the SSE to best

approximate A; however, we are now subject to the constraint that X
is a Symmetric Matrix.

X Symmetric Means:
X =X"
X-X"=0
The Recipe:

© We have our equation to minimize: tr(ETE).
© We have our constraint: H=X — X’ = 0.
@ Put in LaGrange multiplier form.

@ Take the derivative.

@ Set the derivative equal to 0.

O Solve for X.
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RINCII DI AV A SN IRV VISNEI A PPLICATION 2: RESTRICTED LEAST SQUARES (X = X )

CALCULATION

First -- set up the problem:

9(X) = F(X)+ > (uijh)) by (23)
i
= tr(ETE) 4 tr(UTH) by (5)
= tr(ETE) 4 tr[UT (X — X7)]
= tr(ETE) 4 tr(UTX) — tr(UTXT) by (1)
= tr(ETE) 4 tr(UTX) — tr(UX) by (3) & (4)
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RINCII DI AV A SN IRV VISNEI A PPLICATION 2: RESTRICTED LEAST SQUARES (X = X )

CALCULATION

Second -- take the derivative:

9g(X)  Itr(ETE) + tr(UTX) — tr(UX)]

X X
_Ow(E'E)  9tr(U'X)  9tr(UX)
T 0X X X
B otr(UTX)  9tr(UX)
= 284 X+ — o — by (22)
= 2A+2X+U-U" by (13)
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RINCII DI AV A SN IRV VISNEI A PPLICATION 2: RESTRICTED LEAST SQUARES (X = X )

CALCULATION

Third -- set the derivative equal to 0:

89(X) T
= —2A +2X -U' =
X + +U 0
2X =2A+UT —-U
T_

However, now note that: X = X7

vl —u\*
)
U-U"”

2

X" = <A+

X" =AT +
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VNIOBINN NI APPLICATION 2: RESTRICTED LEAST SQUARES (X = X )

RESULT

Fourth -- add X7 to both sides and solve for X:

ur —-u U-u”T
X+XT:A+—jT—+AT+—77—
T T
X+X:A+AT+U2U—U2U
2X = A + AT
T
A:X:#

Therefore, to approximate A with a Symmetric Matrix, the best
matrix (according to the Least Squares Criterion) is the average of the
elements of A and the elements of A”.
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NN D103 VN NG NI SR (ISN (NIl APpLICATION 3: MLE Factor Anarysis (LRC)

DEFINITION

The function we want to maximize:
uw=|UYR-FFH U

@ R is a correlation matrix.
o diag(R) =1

@ F is a factor pattern matrix of uncorrelated common factors.

@ U? is a covariance matrix of uncorrelated unique factors.

o U? = diag(U?) = I — diag(FF7)
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NN D103 VN NG NI SR (ISN (NIl APpLICATION 3: MLE Factor Anarysis (LRC)

DEFINITION

The function we want to maximize:
u=|UYR-FF) U

The function w is a likelihood ratio criterion for a test of independence
after the common factors have been partialed out of the covariance
matrix.

U Y(R — FFT)U™! should be close to I, so u should be close to 1.

We want to find the F (and consequently the U2) that results in a
determinant as close to 1 as possible.
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NN D103 VN NG NI SR (ISN (NIl APpLICATION 3: MLE Factor Anarysis (LRC)

DEFINITION

To make the derivatives simpler, let:

uy = U2 and uy = |R — FFT|
Note that:

wup = [U?||R=FFT| = [U Y R-FFT||U!| = [UY(R-FFT) U |

Thus, we can use the product rule to find the derivative:

87’[1 o 8(u1u2)
OF  OF
o alﬂ 8u2
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NN D103 VN NG NI SR (ISN (NIl APpLICATION 3: MLE Factor Anarysis (LRC)

CALCULATION:

Let’s find the derivative of the first part.

ouy _9|U?|  9|u?Tt

- = (by determinant rules)

OF  OF OF
_ 8“(\(;2\1) (since tr(|X]) = [X|)
_ _W by (16)
T o

Our next objective is to find the derivative of the highlighted part.
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TRACE DERIVATIVE APPLICATIONS

CALCULATION:

AppLICATION 3: MLE Factor Anarysis (LRC)

Continuing:

OlUl 9T — diag(FFT)|

OF OF

Otr (QC[I — diag(FFT)])

(by definition)

OF

_0w(Q)  9tr[Q, diag(FFT)]

OF
=0

OF

_otr[Q, diag(FFT)]

OF

_ 0tr[Q. diag(FF")]

OF
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NN D103 VN NG NI SR (ISN (NIl APpLICATION 3: MLE Factor Anarysis (LRC)

CALCULATION:

Based on (21), Q, is the Adjoint of [I — diag(FFT)] = U2

Therefore:
U?'Q,. = (U™ by (17)
Q. =|U?(U7?)

Because U? is a diagonal matrix, Q. = |[U%|(U~?) is a diagonal matrix.

And:
OUl  ou[Q.diag(FF")]  dtr[diag(Q.FF")]  0ur(QFF")

OF OF OF - OF

Because the trace only operates on the diagonal, the trace of the
diagonal of a matrix is the same as the trace of the original matrix.

STEVEN W. NYDICK




R INCII DI VN A SN RTINS ISNEI A PPLICATION 3: MLE FacTtor ANaLysis (LRC)

CALCULATION:
Continuing:
otr(QFFT) otr(FTQ,FI
OF OF
= —(QTFI” + QFI) by (14)
=-(Q"+QF
= —2QF (Q is symmetric)
= —2|U%U°F by (17)
And, thus:
Ouy 5, 0|U|?
o _ _ 24
aF ~ V15 by (24)
= —|U?|72(—2|U?|U?F)
=2|U%"lUF
=2(U 4 U%F (25)
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R INCII DI VN A SN RTINS ISNEI A PPLICATION 3: MLE FacTtor ANaLysis (LRC)

CALCULATION:

Now, let’s find the derivative of the second part.

du; R —FFT]|

OF OF

_ 0tr[Q (R — FFT)]

= 5F by (21)

_otr(QR)  0tr(QFF)

=—Q3F 5F by (1) & (2)

_ otr(FTQFI)

=0-— o by (4)
—-(Q"+QF by (14)

= —2QF (Q is symmetric)

= 2R - FF!|(R - FF1)"'F (26)
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NN D103 VN NG NI SR (ISN (NIl APpLICATION 3: MLE Factor Anarysis (LRC)

CALCULATION: ENTIRE THING

Putting the pieces together:

ou _Ow, . Ous
oF ~ oF TR

Which implies that

ou 9y
o5 = (20 JU?F)|R — FFT|

+]U2|(=2|R — FFT|(R — FF1)~'F)
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NN D103 VN NG NI SR (ISN (NIl APpLICATION 3: MLE Factor Anarysis (LRC)

CALCULATION: FINDING MAXIMUM

To find the maximum of this function, we must set it equal to 0 and
solve.

0=2/U?|(U?F)|R - FF'| - 2|U?|R — FF!|(R — FF1)~'F

0=2/U?||R - FF|(U?F — (R - FF1)"'F)
0=U"?F - (R-FF)'F
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NN D103 VN NG NI SR (ISN (NIl APpLICATION 3: MLE Factor Anarysis (LRC)

CALCULATION: FINDING MAXIMUM

Finishing the calculation:

0=U"?%F - (R-FF)'F
(R—FF)"'F =U%F
F=(R-FF)U?F
F=RU?F - FFTU?F
RU?F - F = FFTU?F
(RU2-1)F =F(FTU?F) (27)
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NN D103 VN NG NI SR (ISN (NIl APpLICATION 3: MLE Factor Anarysis (LRC)

RESULT

Based on the previous slide, we have

(RU™? —I)F = F(FTU *F)

Let A = (F'U?F) be diagonal. Then

M O - 0
(RU2—I)(f), £y, ... ,£,) = (f1, 6, ... £, 0 X

o

0 0 A

(RUZ = D)(f1, 5, .. £2) = (i1, B2do, o Fada)
(R,U_2 = D(f1,f2, . ) = (Aify, Aoy, o AER)

is an implicit eigenproblem.
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