WITH(OUT) A TRACE MATRIX DERIVATIVES THE EASY WAY

Steven W. Nydick

University of Minnesota

May 16, 2012

OUTLINE

INTRODUCTION

- Notation
- History of Paper
- 2 Traces
 - Algebraic Trace Properties
 - Calculus Trace Properties
- 3 Trace Derivatives
 - Directional Derivatives
 - Example 1: tr(AX)
 - Example 2: $tr(X^T A X B)$
 - Example 3: $tr(\mathbf{Y}^{-1})$
 - Example 4: $|\mathbf{Y}|$
- **4** Trace Derivative Applications
 - Application 1: Least Squares
 - Application 2: Restricted Least Squares $(\boldsymbol{X} = \boldsymbol{X}^T)$
 - Application 3: MLE Factor Analysis (LRC)

References

Notation ____

- A: A matrix
- A_c : A matrix held constant
- **x**: A vector
- y: A scalar (or a scalar function)
- $\bullet~\mathbf{x}^T$ or $\mathbf{X}^T :$ The transpose of \mathbf{x} or \mathbf{X}
- x_{ij} : The element in the ith row and jth column of **X**
- $(x^T)_{ij}$: The element in the ith row and jth column of \mathbf{X}^T
- $\frac{\partial \mathbf{Y}}{\partial x}$: A matrix with elements $\frac{\partial y_{ij}}{\partial x}$
- $\frac{\partial y}{\partial \mathbf{X}}$: A matrix with elements $\frac{\partial y}{\partial x_{ij}}$
- $\langle \mathbf{x} \rangle_i$ or $\langle \mathbf{X} \rangle_{ij}$: The *i*th or *ij*th **place** of \mathbf{x} or \mathbf{X}

GRADIENT, JACOBIAN, HESSIAN

A <u>Gradient</u> is the derivative of a scalar with respect to a vector.

$$\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} = \left(\begin{bmatrix} \frac{\partial f(\mathbf{x})}{\partial x_1} \end{bmatrix} \begin{bmatrix} \frac{\partial f(\mathbf{x})}{\partial x_2} \end{bmatrix} \dots \begin{bmatrix} \frac{\partial f(\mathbf{x})}{\partial x_n} \end{bmatrix} \right)^T$$

If we have the function: $f(\mathbf{x}) = 2x_1x_2 + x_2^2 + x_1x_3^2$, then the Gradient is

$$\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} = \left(\begin{bmatrix} \frac{\partial f(\mathbf{x})}{\partial x_1} \end{bmatrix} \begin{bmatrix} \frac{\partial f(\mathbf{x})}{\partial x_2} \end{bmatrix} \begin{bmatrix} \frac{\partial f(\mathbf{x})}{\partial x_3} \end{bmatrix} \right)^T$$
$$= \begin{bmatrix} 2x_2 + x_3^2 & 2x_1 + 2x_2 & 2x_1x_3 \end{bmatrix}^T$$

NOTATION

GRADIENT, JACOBIAN, HESSIAN

A Jacobian is a the derivative of a vector with respect to a transposed vector.

$$\frac{\partial \mathbf{f}(\mathbf{x})}{\partial \mathbf{x}^{T}} = \begin{pmatrix} \left[\frac{\partial f_{1}(\mathbf{x})}{\partial x_{1}} \right] & \cdots & \left[\frac{\partial f_{1}(\mathbf{x})}{\partial x_{n}} \right] \\ \vdots & \cdots & \vdots \\ \left[\frac{\partial f_{k}(\mathbf{x})}{\partial x_{1}} \right] & \cdots & \left[\frac{\partial f_{k}(\mathbf{x})}{\partial x_{n}} \right] \end{pmatrix}$$

If we have the function

$$\mathbf{f}(\mathbf{x}) = \begin{bmatrix} 3x_1^2 + x_2 & \ln(x_1) & \sin(x_2) \end{bmatrix}^T$$

Then the Jacobian is

$$\frac{\partial \mathbf{f}(\mathbf{x})}{\partial \mathbf{x}^T} = \begin{pmatrix} 6x_1 & 1\\ \frac{1}{x_1} & 0\\ 0 & \cos(x_2) \end{pmatrix}$$

GRADIENT, JACOBIAN, HESSIAN

The $\underline{\mathrm{Hessian}}$ is derivative of a Gradient with respect to a transposed vector.

$$\frac{\partial^2 f(\mathbf{x})}{\partial \mathbf{x} \partial \mathbf{x}^T} = \begin{pmatrix} \left[\frac{\partial f(\mathbf{x})}{\partial x_1^2} \right] & \cdots & \left[\frac{\partial f(\mathbf{x})}{\partial x_1 \partial x_n} \right] \\ \vdots & \ddots & \vdots \\ \left[\frac{\partial f(\mathbf{x})}{\partial x_n \partial x_1} \right] & \cdots & \left[\frac{\partial f(\mathbf{x})}{\partial x_n^2} \right] \end{pmatrix}$$

Because our above Gradient is

$$\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} = \begin{bmatrix} 2x_2 + x_3^2 & 2x_1 + 2x_2 & 2x_1x_3 \end{bmatrix}^T$$

The Hessian would be

$$\frac{\partial^2 f(\mathbf{x})}{\partial \mathbf{x} \partial \mathbf{x}^T} = \begin{pmatrix} 0 & 2 & 2x_3\\ 2 & 2 & 0\\ 2x_3 & 0 & 2x_1 \end{pmatrix}$$

SIMPLIFYING CLASSES OF MATRIX DERIVATIVES

History of Schöneman's paper:

- Wrote it while a post doc at UNC.
- ② Originally submitted it to Psychometrika in 1965.
- Editor mildly criticized paper.
 - Compliment: reformulate certain problems (Lagrange multipliers) into interesting form (traces).
 - Complaint: why would we want to do that?
- Revised paper, resubmitted paper, but editorship changed hands, and took them almost a year to respond (asking for another revision).
 - The new editor told him that a reviewer said: "nothing wrong with paper but not too important".

SIMPLIFYING CLASSES OF MATRIX DERIVATIVES

History of Schöneman's paper:

- Later learned that the original delay was caused by a statistician with expertise in matrix derivatives who thought that the paper would be published eventually.
- The paper was published eventually ... 20 years later in MBR.
- Wrote the article "Better Never than Late: Peer Review and the Preservation of Prejudice" in 2001.

SIMPLIFYING CLASSES OF MATRIX DERIVATIVES

There are two beneficial properties of Schöneman's paper:

Derivatives are <u>always</u> in matrix form.
No need for Dummy Matrices.

But, uses traces, and thus, uses trace properties.

So ... A Review of Traces/Trace Properties:

WHAT IS A TRACE?

Definition:

$$\operatorname{tr}(\mathbf{Y}) = \sum_{i} (y_{ii}), \quad \mathbf{Y} \text{ is square}$$

OK - that's simple, but what does that mean?

Well, take a square matrix and add up the diagonal elements

$$\mathbf{A} = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix}, \quad \operatorname{tr}(\mathbf{A}) = a_{11} + a_{22} + \cdots + a_{nn}$$

LINEARITY OF TRACES

The \underline{MOST} important aspect of traces (for our later derivations):

 $\operatorname{tr}: M(\mathbb{R})^n \to \mathbb{R}^1$ is linear

Thus:

$$\operatorname{tr} (\mathbf{A} + \mathbf{B}) = \operatorname{tr} (\mathbf{A}) + \operatorname{tr} (\mathbf{B})$$
(1)
and
$$\operatorname{tr} (c\mathbf{A}) = c \operatorname{tr} (\mathbf{A})$$
(2)

TRANSPOSITION OF DEPENDENT VARIABLE

Traces have **SEVERAL OTHER** important properties.

Property 1: Transposition of Dependent Variable

We have:

$$\operatorname{tr}\left(\mathbf{Y}\right) = \operatorname{tr}\left(\mathbf{Y}^T\right) \tag{3}$$

Thus:

$$\frac{\partial \mathrm{tr}\left(\mathbf{Y}\right)}{\partial \mathbf{X}} = \frac{\partial \mathrm{tr}\left(\mathbf{Y}^{T}\right)}{\partial \mathbf{X}}$$

CYCLIC PERMUTATION

Property 2: Cyclic Permutation

We have:

$$\operatorname{tr}\left(\mathbf{AB}\right) = \operatorname{tr}\left(\mathbf{BA}\right) \tag{4}$$

Why? Well, start from the left of Equation (4).

$$\operatorname{tr} (\mathbf{AB}) = \operatorname{tr} \left[\begin{pmatrix} a_{11} & \cdots & a_{1m} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nm} \end{pmatrix} \begin{pmatrix} b_{11} & \cdots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{m1} & \cdots & b_{mn} \end{pmatrix} \right]$$
$$= a_{11}b_{11} + \cdots + a_{1m}b_{m1} + \sum_{i=1}^{m} (a_{2i}b_{i2}) + \cdots + \sum_{i=1}^{m} (a_{ni}b_{in})$$
$$= \sum_{j=1}^{n} \sum_{i=1}^{m} (a_{ji}b_{ij})$$

CYCLIC PERMUTATION

And also start from the right of Equation (4).

$$\operatorname{tr} \left(\mathbf{B} \mathbf{A} \right) = \operatorname{tr} \left[\begin{pmatrix} b_{11} & \cdots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{m1} & \cdots & b_{mn} \end{pmatrix} \begin{pmatrix} a_{11} & \cdots & a_{1m} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nm} \end{pmatrix} \right]$$
$$= \sum_{i=1}^{m} \sum_{j=1}^{n} (b_{ij}a_{ji}) = \sum_{j=1}^{n} \sum_{i=1}^{m} (b_{ij}a_{ji}) = \sum_{j=1}^{n} \sum_{i=1}^{m} (a_{ji}b_{ij})$$
$$= \operatorname{tr} \left(\mathbf{A} \mathbf{B} \right)$$

So:

Rotating the order **does not** change the trace of square matrices.

CYCLIC PERMUTATION

A consequence of the last derivation:

- Let **U** and **H** have the same dimensions.
- If you want to multiply paired entries (e.g. $u_{ij}h_{ij}$) and add all the multiplications:
 - Flip one of the matrices, multiply, and take the trace of that multiplication.

$$\sum_{j=1}^{m} \sum_{i=1}^{n} (u_{ij}h_{ij}) = \sum_{j=1}^{m} \sum_{i=1}^{n} \left((u^T)_{ji}h_{ij} \right) = \operatorname{tr} \left(\mathbf{U}^T \mathbf{H} \right)$$
(5)

TRANSPOSITION OF INDEPENDENT VARIABLE

Calculus Property 1: Transposition of Independent Variable

By definition:

$$\frac{\partial \operatorname{tr} \left(\mathbf{Y} \right)}{\partial \mathbf{X}} = \frac{\partial \operatorname{tr} \left(\mathbf{Y} \right)}{\partial x_{ij}}, \, i = 1, \, \dots, n; \, j = 1, \, \dots, m$$

where $\frac{\partial \operatorname{tr}(\mathbf{Y})}{\partial x_{ij}}$ is what we put in the *ij*th place in our derivative matrix.

Thus:

$$\frac{\partial \operatorname{tr}\left(\mathbf{Y}\right)}{\partial (\mathbf{X}^{T})} = \frac{\partial \operatorname{tr}\left(\mathbf{Y}\right)}{\partial x_{ji}}, \left(j = 1, \dots, m; i = 1, \dots, n\right) = \left(\frac{\partial \operatorname{tr}\left(\mathbf{Y}\right)}{\partial \mathbf{X}}\right)^{T} \quad (6)$$

because $\frac{\partial \operatorname{tr}(\mathbf{Y})}{\partial x_{ji}}$ is what we put in the *ij*th place in our derivative matrix.

TRANSPOSITION OF INDEPENDENT VARIABLE

Deriving with respect to a transposed variable replaces each entry in the new matrix with the **derivative** of the **corresponding transposed component**.

Replacing every entry with the derivative of the transposed component \rightarrow Transposing the entire matrix of partial derivatives.

Calculus Property 2: Product Rule

An illustration of the product rule:

Calculus Property 2: Product Rule

Based on the previous illustration:

$$\frac{d(uv)}{dx} = \left(\frac{du}{dx}\right)(v) + (u)\left(\frac{dv}{dx}\right)$$

In this case, u and v are scalar **functions** of x.

Now, we want to translate this to matrices and traces of matrices:

Pick any row \mathbf{u}_i and any column \mathbf{v}_j from \mathbf{U} and \mathbf{V} .

If we take the derivative of the matrix product with respect to a scalar: $\frac{\partial(\mathbf{UV})}{\partial x}$

we find that the i,jth place in our new derivative matrix is

$$\frac{\partial(\mathbf{u}_{i.}^{T}\mathbf{v}_{.j})}{\partial x} = \frac{\partial(u_{i1}v_{1j} + \dots + u_{in}v_{nj})}{\partial x}$$
$$= \frac{\partial(u_{i1}v_{1j})}{\partial x} + \dots + \frac{\partial(u_{in}v_{nj})}{\partial x}$$
$$= \frac{\partial u_{i1}}{\partial x}v_{1j} + u_{i1}\frac{\partial v_{1j}}{\partial x} + \dots + \frac{\partial u_{in}}{\partial x}v_{nj} + u_{in}\frac{\partial v_{nj}}{\partial x}$$

So, now we want to collect terms:

$$\frac{\partial (\mathbf{u}_{i.}^{T} \mathbf{v}_{.j})}{\partial x} = \frac{\partial u_{i1}}{\partial x} v_{1j} + u_{i1} \frac{\partial v_{1j}}{\partial x} + \dots + \frac{\partial u_{in}}{\partial x} v_{nj} + u_{in} \frac{\partial v_{nj}}{\partial x}$$
$$= \left(\frac{\partial u_{i1}}{\partial x} v_{1j} + \dots + \frac{\partial u_{in}}{\partial x} v_{nj}\right) + \left(u_{i1} \frac{\partial v_{1j}}{\partial x} + \dots + u_{in} \frac{\partial v_{nj}}{\partial x}\right)$$
$$= \frac{\partial \mathbf{u}_{i.}^{T}}{\partial x} \mathbf{v}_{.j} + \mathbf{u}_{i.}^{T} \frac{\partial \mathbf{v}_{.j}}{\partial x}$$

And because our element is **arbitrary**, we can generalize:

$$\frac{\partial (\mathbf{UV})}{\partial x} = \frac{\partial \mathbf{U}}{\partial x} \mathbf{V} + \mathbf{U} \frac{\partial \mathbf{V}}{\partial x}$$
$$= \frac{\partial (\mathbf{UV}_c)}{\partial x} + \frac{\partial (\mathbf{U}_c \mathbf{V})}{\partial x}$$

(7)

There are two notes on the product rule:

Note 1: For the product rule to make sense, both \mathbf{U} and \mathbf{V} should be functions of \mathbf{X} .

For the Univariate Case, let $u = x^2 + 2$ and $v = 2x + \sin(x)$. Then:

$$\frac{d(uv)}{dx} = \left(\frac{du}{dx}\right)(v) + (u)\left(\frac{dv}{dx}\right) \\ = (2x)\left(2x + \sin(x)\right) + (x^2 + 2)\left(2 + \cos(x)\right) \\ = 4x^2 + 2x\sin(x) + 2x^2 + 4 + x^2\cos(x) + 2\cos(x) \\ = x^2\left(6 + \cos(x)\right) + 2\left(x\sin(x) + \cos(x)\right) + 4$$

We will discuss the multivariate case later.

There are two notes on the product rule:

Note 2: We can put \mathbf{V}_c and \mathbf{U}_c inside the derivative function, but they are now **constants** with respect to \mathbf{X} , even if they are functions of \mathbf{X} .

For the Univariate Case, let $u = x^3 + \ln(x)$ and $v = 3x^2$. Then:

$$\frac{d(uv_c)}{dx} = \frac{d\left[\left(x^3 + \ln(x)\right)(3x^2)_c\right]}{dx}$$
$$= \left(3x^2 + \frac{1}{x}\right)(3x^2)$$
$$= 9x^4 + 3x$$

We will discuss the multivariate case later.

MULTIDIMENSIONAL CHAIN RULE

Calculus Property 3: Chain Rule

Let:

$$z = 2x_1^2 + x_1\cos(x_2)$$

Then, by definition:

$$\frac{\partial z}{\partial \mathbf{x}} = \begin{pmatrix} \left[\frac{\partial z}{\partial x_1}\right] \\ \left[\frac{\partial z}{\partial x_2}\right] \end{pmatrix} = \begin{pmatrix} 4x_1 + \cos(x_2) \\ -x_1\sin(x_2) \end{pmatrix}$$

Our partial derivative with respect to x_1 is $4x_1 + \cos(x_2)$, and our partial derivative with respect to x_2 is $-x\sin(x_2)$. Furthermore, these go in the respective parts of our derivative matrix (replacing x_1 and x_2).

MULTIDIMENSIONAL CHAIN RULE

Now if:

$$x_1 = 3t$$
 and $x_2 = t$

Then:

 $\frac{dz}{dt}$ is now the derivative with respect to t accounted for by x_1 and the derivative with respect to t accounted for by x_2 .

And we account for:

$$4(3t) + \cos(t)]\frac{\partial x_1}{\partial t} \qquad \text{by } x_1$$
$$-(3t)\sin(t)\frac{\partial x_2}{\partial t} \qquad \text{by } x_2$$

MULTIDIMENSIONAL CHAIN RULE

Thus:

$$\frac{dz}{dt} = \left(\frac{\partial z}{\partial \mathbf{x}}\right)^T \frac{\partial \mathbf{x}}{\partial t} = \sum_{i=1}^2 \left(\frac{\partial z}{\partial x_i} \frac{\partial x_i}{\partial t}\right)$$
$$= [12t + \cos(t)](3) + [-(3t)\sin(t)](1)$$
$$= 36t + 3\cos(t) - 3t\sin(t)$$

But: $z = 2x_1^2 + x_1 \cos(x_2) = 2(3t)^2 + (3t)\cos(t) = 18t^2 + 3t\cos(t)$

So, another way of getting the same result:

$$\frac{dz}{dt} = \frac{d[18t^2 + 3t\cos(t)]}{dt}$$

= 36t + 3t[-sin(t)] + 3cos(t) = 36t + 3cos(t) - 3tsin(t)

Because effects are slopes and slopes are derivatives, writing out a path diagram from t to z would have the derivatives along the paths.

The **total effect** of t on z is found by multiplying the effects down each path and summing the total effects across paths.

For example, let's find the total effect of a 1 unit change in t on z. Well, if t changes 1 unit, then x_1 changes $\frac{dx_1}{dt}$ units (because the derivative is the slope of t on x_1). Moreover, if x_1 changes 1 unit, then z changes $\frac{dz}{dx_1}$ units (because the derivative is the slope of x_1 on z).

Therefore, if t changes 1 unit, then it's effect on z through x_1 would be the distance it travels in the x_1 direction:

$$x_1$$
 distance $= \frac{dt}{dx_1} \times 1 = \frac{dt}{dx_1}$

multiplied by how much a unit change in the x_1 direction changes z:

z distance through
$$x_1 = \frac{dx_1}{dz} \times (x_1 \text{ distance}) = \frac{dx_1}{dz} \frac{dt}{dx_1}$$

And if t changes 1 unit, then it's effect on z through x_2 would be:

z distance through
$$x_2 = \frac{dx_2}{dz} \times (x_2 \text{ distance}) = \frac{dx_2}{dz} \frac{dt}{dx_2}$$

Thus, if t moves 1 unit, it moves $z: \left(\frac{dx_1}{dz}\frac{dt}{dx_1}\right)$ through x_1 and it moves $z: \left(\frac{dx_2}{dz}\frac{dt}{dx_2}\right)$ through x_2 , so it **in total** moves z:z total distance $= \frac{dx_1}{dz}\frac{dt}{dx_1} + \frac{dx_2}{dz}\frac{dt}{dx_2}$

Or, as written before, to find the **effect** of t on z:

$$\frac{dz}{dt} = \left(\frac{\partial z}{\partial x_1}\right) \left(\frac{\partial x_1}{\partial t}\right) + \left(\frac{\partial z}{\partial x_2}\right) \left(\frac{\partial x_2}{\partial t}\right) = \sum_{i=1}^2 \left(\frac{\partial z}{\partial x_i}\frac{\partial x_i}{\partial t}\right)$$

MATRICES CHAIN RULE

And because as our vector chain rule:

$$\frac{d[f(\mathbf{y})]}{dx} = \sum_{i} \left(\frac{d[f(\mathbf{y})]}{d[y_i(x)]} \frac{d[y_i(x)]}{dx} \right) \tag{8}$$

We can expand upon that to obtain a chain rule for matrices.

$$\frac{\partial [f(\mathbf{Y})]}{\partial x_{pq}} = \sum_{i} \sum_{j} \left(\frac{\partial [f(\mathbf{Y})]}{\partial [y_{ij}(x_{pq})]} \frac{\partial [y_{ij}(x_{pq})]}{\partial x_{pq}} \right)$$
(9)

In Equation (9) y_{ij} is a function of x_{pq} , and we have to take the derivative with respect to each of the elements in **Y**.

DERIVATIVES

Here is the standard derivative definition:

$$Df(x) = \lim_{t \to 0} \frac{f(x+t) - f(t)}{t}$$

The equation is a infinitesimal form of $m = \frac{\Delta y}{\Delta x}$; it is finding the slope or **linear approximation** to this function as the distance between the points on the x-axis goes to 0.

If there is a large distance between points on the x-axis, and if the function is not linear, then the slope will not be a good representation of how the function is changing. However, as the distance between points on the x-axis goes to 0, the mini function becomes more linear.

DIRECTIONAL DERIVATIVES: VECTORS

In vector calculus, there is a similar equation.

$$D_{\mathbf{w}}f(\mathbf{x}) = \lim_{t \to 0} \frac{f(\mathbf{x} + t\mathbf{w}) - f(\mathbf{x})}{t}$$

Now, our function is a surface (a scalar function of as many dimensional inputs as there are elements in \mathbf{x}), so the derivative will change at a multidimensional point \mathbf{x} based on the direction we travel from that point.

Think of what happens if you were to stand on a mountain and turn around in a circle: in some directions, the slope will be very steep (and you might fall off the mountain), but in other directions, there will barely be any slope at all.

DIRECTIONAL DERIVATIVES: VECTORS

Now \mathbf{w} tells us which direction we want to be facing when we calculate the derivative at a specific point \mathbf{x} .

$$D_{\mathbf{w}}f(\mathbf{x}) = \lim_{t \to 0} \frac{f(\mathbf{x} + t\mathbf{w}) - f(\mathbf{x})}{t}$$

The directional derivative is basically telling us what is the best **linear approximation** of this function at a particular point if we are facing up the mountain, down the mountain, at a 45 degree angle up the mountain, etc.

DIRECTIONAL DERIVATIVES: VECTORS

If our \mathbf{x} vector is **two** dimensional, then the function would form a mountain in **three** dimensional space.

One Direction (at a given point):

DIRECTIONAL DERIVATIVES: VECTORS

A Second Direction (at the same point):

Notice how the steepness of the slope changes at both points.

DIRECTIONAL DERIVATIVES: VECTORS

First -- pick an abritrary unit length $\mathbf{w}:$

$$\mathbf{w}^T \mathbf{w} = 1$$

Second -- set up the standard, directional derivative definition:

$$D_{\mathbf{w}}f(\mathbf{x}) = \lim_{t \to 0} \frac{f(\mathbf{x} + t\mathbf{w}) - f(\mathbf{x})}{t}$$

If $\mathbf{w}_{(i)} = (0, 0, 0, 0, 1, 0, \dots, 0)$ where 1 is in $\langle \mathbf{w} \rangle_i$, then
$$D_{\mathbf{w}_{(i)}}f(\mathbf{x}) = \lim_{t \to 0} \frac{f(\mathbf{x} + t\mathbf{w}_{(i)}) - f(\mathbf{x})}{t}$$

will reduce to the **regular** partial derivative in the *i*th place.

DIRECTIONAL DERIVATIVES: VECTORS

Now, if we can find a \mathbf{u} , such that:

$$D_{\mathbf{w}}f(\mathbf{x}) = \lim_{t \to 0} \frac{f(\mathbf{x} + t\mathbf{w}) - f(\mathbf{x})}{t} = \mathbf{w}^{T}\mathbf{u}$$

Then, for an arbitrary place *i*, in an arbitrary direction $\langle \mathbf{w} \rangle_i$:

$$D_{\mathbf{w}_{(i)}} f(\mathbf{x}) = \mathbf{w}_{(i)}^T \mathbf{u}$$
 reduces to $D_{\mathbf{w}_{(i)}} f(\mathbf{x}) = u_i$

where u_i is the partial derivative in the *i*th place.

Because the ith place is arbitrary:

$$\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} = \mathbf{u}$$

DIRECTIONAL DERIVATIVES: MATRICES

Now let $\mathbf{Y}_{(ij)}$ be a Matrix such that $y_{ij} = 1$ in $\langle \mathbf{Y} \rangle_{ij}$ and 0 elsewhere.

Then, extending our directional derivative definition to matrices:

$$D_{\mathbf{Y}}f(\mathbf{X}) = \lim_{t \to 0} \frac{f(\mathbf{X} + t\mathbf{Y}) - f(\mathbf{X})}{t}$$
(10)

We can conclude that

$$D_{\mathbf{Y}_{(ij)}}f(\mathbf{X}) = \lim_{t \to 0} \frac{f(\mathbf{X} + t\mathbf{Y}_{(ij)}) - f(\mathbf{X})}{t}$$

will "pick off" the partial derivative in the ijth place.

DIRECTIONAL DERIVATIVES: MATRICES

Now, if we can find a \mathbf{U} , such that

$$D_{\mathbf{Y}}f(\mathbf{X}) = \lim_{t \to 0} \frac{f(\mathbf{X} + t\mathbf{Y}) - f(\mathbf{X})}{t} = \operatorname{tr}\left(\mathbf{Y}^{T}\mathbf{U}\right)$$
(11)

Then, for an arbitrary place ij, in an arbitrary direction $\langle \mathbf{Y} \rangle_{ij}$

$$D_{\mathbf{Y}_{(ij)}}f(\mathbf{X}) = \operatorname{tr}(\mathbf{Y}_{(ij)}^T \mathbf{U}) = \sum_j \sum_i (y_{ij}u_{ij}) \qquad \text{by (5)}$$

 $= u_{ij}$

Because the ijth place is arbitrary:

$$\frac{\partial f(\mathbf{X})}{\partial \mathbf{X}} = \mathbf{U} \tag{12}$$

DIRECTIONAL DERIVATIVES: MATRICES

 $\underline{\text{First}}$ -- put in the form of the definition:

$$D_{\mathbf{Y}}f(\mathbf{X}) = \lim_{t \to 0} \frac{f(\mathbf{X} + t\mathbf{Y}) - f(\mathbf{X})}{t}$$

<u>Second</u> -- simplify until you can find the equality:

$$D_{\mathbf{Y}}f(\mathbf{X}) = \operatorname{tr}\left(\mathbf{Y}^T\mathbf{U}\right)$$

<u>Third</u> -- remove your \mathbf{U} , and note that:

$$\frac{\partial f(\mathbf{X})}{\partial \mathbf{X}} = \mathbf{U}$$

Our 1st function:

$$f(\mathbf{X}) = \operatorname{tr}(\mathbf{A}\mathbf{X})$$

Our objective is to find:

$$\frac{\partial f(\mathbf{X})}{\partial \mathbf{X}} = \frac{\partial \operatorname{tr}(\mathbf{A}\mathbf{X})}{\partial \mathbf{X}}$$

Only by simplifying the definition:

$$D_{\mathbf{Y}}f(\mathbf{X}) = \lim_{t \to 0} \frac{f(\mathbf{X} + t\mathbf{Y}) - f(\mathbf{X})}{t}$$

$$D_{\mathbf{Y}}f(\mathbf{X}) = \lim_{t \to 0} \frac{f(\mathbf{X} + t\mathbf{Y}) - f(\mathbf{X})}{t} \qquad \text{by (10)}$$
$$= \lim_{t \to 0} \frac{\operatorname{tr}(\mathbf{A}[\mathbf{X} + t\mathbf{Y}]) - \operatorname{tr}(\mathbf{A}\mathbf{X})}{t}$$
$$= \lim_{t \to 0} \frac{\operatorname{tr}(\mathbf{A}\mathbf{X} + \mathbf{A}t\mathbf{Y}) - \operatorname{tr}(\mathbf{A}\mathbf{X})}{t} \qquad \text{by (1)}$$
$$= \lim_{t \to 0} \frac{\operatorname{tr}(t\mathbf{A}\mathbf{Y})}{t} \qquad \text{by (2)}$$
$$= \operatorname{tr}(\mathbf{A}\mathbf{Y})$$
$$= \operatorname{tr}([\mathbf{A}\mathbf{Y}]^T) \qquad \text{by (3)}$$
$$= \operatorname{tr}(\mathbf{Y}^T\mathbf{A}^T)$$

Result

So, we found that:

$$D_{\mathbf{Y}}f(\mathbf{X}) = \lim_{t \to 0} \frac{f(\mathbf{X} + t\mathbf{Y}) - f(\mathbf{X})}{t}$$
$$= \operatorname{tr}(\mathbf{Y}^T \mathbf{A}^T) = \operatorname{tr}(\mathbf{Y}^T \mathbf{U}) \qquad \text{by (11)}$$

And we can spot that in **this** case:

 $\mathbf{U} = \mathbf{A}^T$

And thus, by Equation (12):

$$\mathbf{U} = \frac{\partial f(\mathbf{X})}{\partial \mathbf{X}} = \frac{\partial \operatorname{tr}(\mathbf{A}\mathbf{X})}{\partial \mathbf{X}} = \mathbf{A}^{T}$$
(13)

Definition

Our 2nd function:

$$f(\mathbf{X}) = \operatorname{tr}(\mathbf{X}^T \mathbf{A} \mathbf{X} \mathbf{B})$$

Our objective is to find:

$$\frac{\partial f(\mathbf{X})}{\partial \mathbf{X}} = \frac{\partial \operatorname{tr}(\mathbf{X}^T \mathbf{A} \mathbf{X} \mathbf{B})}{\partial \mathbf{X}}$$

Only by simplifying the definition:

$$D_{\mathbf{Y}}f(\mathbf{X}) = \lim_{t \to 0} \frac{f(\mathbf{X} + t\mathbf{Y}) - f(\mathbf{X})}{t}$$

$$D_{\mathbf{Y}}f(\mathbf{X}) = \lim_{t \to 0} \frac{f(\mathbf{X} + t\mathbf{Y}) - f(\mathbf{X})}{t} \qquad \text{by (10)}$$
$$= \lim_{t \to 0} \frac{\operatorname{tr}([\mathbf{X} + t\mathbf{Y}]^T \mathbf{A}[\mathbf{X} + t\mathbf{Y}]\mathbf{B}) - \operatorname{tr}(\mathbf{X}^T \mathbf{A}\mathbf{X}\mathbf{B})}{t}$$
$$= \lim_{t \to 0} \frac{\operatorname{tr}([\mathbf{X} + t\mathbf{Y}]^T \mathbf{A}[\mathbf{X} + t\mathbf{Y}]\mathbf{B} - \mathbf{X}^T \mathbf{A}\mathbf{X}\mathbf{B})}{t} \qquad \text{by (1)}$$
$$= \lim_{t \to 0} \frac{\operatorname{tr}(\mathbf{X}^T \mathbf{A}t\mathbf{Y}\mathbf{B} + t\mathbf{Y}^T \mathbf{A}\mathbf{X}\mathbf{B} + t\mathbf{Y}^T \mathbf{A}t\mathbf{Y}\mathbf{B})}{t}$$
$$= \lim_{t \to 0} \frac{\operatorname{tr}(t[\mathbf{X}^T \mathbf{A}\mathbf{Y}\mathbf{B} + \mathbf{Y}^T \mathbf{A}\mathbf{X}\mathbf{B} + t\mathbf{Y}^T \mathbf{A}\mathbf{Y}\mathbf{B}])}{t}$$
$$= \lim_{t \to 0} [\operatorname{tr}(\mathbf{X}^T \mathbf{A}\mathbf{Y}\mathbf{B} + \mathbf{Y}^T \mathbf{A}\mathbf{X}\mathbf{B} + t\mathbf{Y}^T \mathbf{A}\mathbf{Y}\mathbf{B}]] \qquad \text{by (2)}$$

Continuing:

$$D_{\mathbf{Y}}f(\mathbf{X}) = \lim_{t \to 0} [\operatorname{tr}(\mathbf{X}^{T}\mathbf{A}\mathbf{Y}\mathbf{B} + \mathbf{Y}^{T}\mathbf{A}\mathbf{X}\mathbf{B} + t\mathbf{Y}^{T}\mathbf{A}\mathbf{Y}\mathbf{B})]$$

=
$$\lim_{t \to 0} [\operatorname{tr}(\mathbf{X}^{T}\mathbf{A}\mathbf{Y}\mathbf{B} + \mathbf{Y}^{T}\mathbf{A}\mathbf{X}\mathbf{B})] + \lim_{t \to 0} [t \operatorname{tr}(\mathbf{Y}^{T}\mathbf{A}\mathbf{Y}\mathbf{B})]$$

by (1) & (2)
=
$$\lim_{t \to 0} [\operatorname{tr}(\mathbf{X}^{T}\mathbf{A}\mathbf{Y}\mathbf{B} + \mathbf{Y}^{T}\mathbf{A}\mathbf{X}\mathbf{B})]$$

=
$$\operatorname{tr}(\mathbf{Y}^{T}\mathbf{A}\mathbf{Y}\mathbf{B} + \mathbf{Y}^{T}\mathbf{A}\mathbf{X}\mathbf{B})]$$

$$= \operatorname{tr}(\mathbf{X}^{T}\mathbf{A}\mathbf{Y}\mathbf{B}) + \operatorname{tr}(\mathbf{Y}^{T}\mathbf{A}\mathbf{X}\mathbf{B}) \qquad \text{by (1)}$$

And Finally:

$$D_{\mathbf{Y}}f(\mathbf{X}) = \operatorname{tr}(\mathbf{B}\mathbf{X}^{T}\mathbf{A}\mathbf{Y}) + \operatorname{tr}(\mathbf{Y}^{T}\mathbf{A}\mathbf{X}\mathbf{B})$$

= $\operatorname{tr}[(\mathbf{B}\mathbf{X}^{T}\mathbf{A}\mathbf{Y})^{T}] + \operatorname{tr}(\mathbf{Y}^{T}\mathbf{A}\mathbf{X}\mathbf{B})$ by (3)
= $\operatorname{tr}(\mathbf{Y}^{T}\mathbf{A}^{T}\mathbf{X}\mathbf{B}^{T}) + \operatorname{tr}(\mathbf{Y}^{T}\mathbf{A}\mathbf{X}\mathbf{B})$
= $\operatorname{tr}(\mathbf{Y}^{T}\mathbf{A}^{T}\mathbf{X}\mathbf{B}^{T} + \mathbf{Y}^{T}\mathbf{A}\mathbf{X}\mathbf{B})$ by (1)
= $\operatorname{tr}(\mathbf{Y}^{T}[\mathbf{A}^{T}\mathbf{X}\mathbf{B}^{T} + \mathbf{A}\mathbf{X}\mathbf{B}])$

Result

So, we found that:

$$D_{\mathbf{Y}}f(\mathbf{X}) = \lim_{t \to 0} \frac{f(\mathbf{X} + t\mathbf{Y}) - f(\mathbf{X})}{t}$$
$$= \operatorname{tr}(\mathbf{Y}^{T}[\mathbf{A}^{T}\mathbf{X}\mathbf{B}^{T} + \mathbf{A}\mathbf{X}\mathbf{B}]) = \operatorname{tr}(\mathbf{Y}^{T}\mathbf{U}) \qquad \text{by (11)}$$

And we can spot that in **this** case:

 $\mathbf{U} = \mathbf{A}^T \mathbf{X} \mathbf{B}^T + \mathbf{A} \mathbf{X} \mathbf{B}$

And thus, by Equation (12):

$$\mathbf{U} = \frac{\partial f(\mathbf{X})}{\partial \mathbf{X}}$$
$$= \frac{\partial \operatorname{tr}(\mathbf{X}^T \mathbf{A} \mathbf{X} \mathbf{B})}{\partial \mathbf{X}} = \mathbf{A}^T \mathbf{X} \mathbf{B}^T + \mathbf{A} \mathbf{X} \mathbf{B}$$
(14)

Our 3rd function, assuming that \mathbf{Y} is non-singular and depends on \mathbf{X} :

$$f(\mathbf{X}) = \operatorname{tr}(\mathbf{Y}^{-1})$$

Our objective is to find a better expression for

$$\frac{\partial f(\mathbf{X})}{\partial \mathbf{X}} = \frac{\partial \operatorname{tr}(\mathbf{Y}^{-1})}{\partial \mathbf{X}}$$

by working with previous trace derivative rules.

We have:

Result

Therefore:

$$\frac{\partial \operatorname{tr}(\mathbf{Y}^{-1})}{\partial \mathbf{X}} = \frac{\partial \operatorname{tr}(\mathbf{Y}_{c}^{-2}\mathbf{Y})}{\partial \mathbf{X}} + \frac{\partial \operatorname{tr}(\mathbf{Y}^{-2}\mathbf{Y}_{c})}{\partial \mathbf{X}} \\
\frac{\partial \operatorname{tr}(\mathbf{Y}^{-1})}{\partial \mathbf{X}} = \frac{\partial \operatorname{tr}(\mathbf{Y}_{c}^{-2}\mathbf{Y})}{\partial \mathbf{X}} + \frac{2\partial \operatorname{tr}(\mathbf{Y}^{-1})}{\partial \mathbf{X}} \qquad \text{by (15)} \\
-\frac{\partial \operatorname{tr}(\mathbf{Y}^{-1})}{\partial \mathbf{X}} = \frac{\partial \operatorname{tr}(\mathbf{Y}_{c}^{-2}\mathbf{Y})}{\partial \mathbf{X}}$$

And, finally, after multiplying by (-1) on both sides:

$$\frac{\partial \operatorname{tr}(\mathbf{Y}^{-1})}{\partial \mathbf{X}} = -\frac{\partial \operatorname{tr}(\mathbf{Y}_{c}^{-2}\mathbf{Y})}{\partial \mathbf{X}}$$
(16)

We have turned a "derivative of the trace-inverse" problem into a standard "trace derivative" problem.

Our 4th function, assuming that \mathbf{Y} is non-singular and depends on \mathbf{X} :

$$f(\mathbf{X}) = |\mathbf{Y}|$$

Our objective is to find a better expression for

$$\frac{\partial f(\mathbf{X})}{\partial \mathbf{X}} = \frac{\partial |\mathbf{Y}|}{\partial \mathbf{X}}$$

by working with previous trace derivative rules and determinant rules.

DETERMINANT REVIEW

We know from linear algebra:

$$\mathbf{Y}^{-1} = \frac{1}{|\mathbf{Y}|} \mathbf{Q}$$

where ${\bf Q}$ is the adjoint matrix

Process for calculating $(q^T)_{ij}$:

- Cross out row i and column j of \mathbf{Y} .
- **2** Take determinant of the smaller $[(n-1) \times (n-1)]$ matrix.
- If i + j is odd, then negate the previous step.

Thus:

$$\mathbf{Y}|\mathbf{I} = \mathbf{Q}\mathbf{Y} \tag{17}$$

Adjoint Review

- Note: $(q^T)_{ij} = q_{ji} \underline{\text{does not}} \text{ depend on } \underline{\text{any}} \text{ of the elements in row } i$ or column j of \mathbf{Y} .
- Thus, q_{ji} does not depend on y_{ij} .

• So:
$$\frac{\partial(q_{ji}y_{ij})}{\partial y_{ij}} = q_{ji}$$

Based on the previous slide we have:

$$|\mathbf{Y}|\mathbf{I} = \mathbf{Q}\mathbf{Y} \qquad \text{by (17)}$$

$$\begin{pmatrix} |\mathbf{Y}| & 0 & \cdots & 0\\ 0 & |\mathbf{Y}| & \vdots & \vdots\\ \vdots & \cdots & \ddots & 0\\ 0 & \cdots & 0 & |\mathbf{Y}| \end{pmatrix} = \begin{pmatrix} \sum_{p} (q_{1p}y_{p1}) & \mathbf{O} \\ & \ddots & & \\ & & \ddots & \\ \mathbf{O} & & & \sum_{p} (q_{np}y_{pn}) \end{pmatrix}$$

DETERMINANT DERIVATIVE, PART 1

Thus, given **any** j such that $1 \leq j \leq n$:

$$|\mathbf{Y}| = \sum_{p} \left(q_{jp} y_{pj} \right) \tag{18}$$

And, for an <u>arbitrary</u> y_{ij} , pick the *j*th row of **q** and column of **y**:

$$\frac{\partial |\mathbf{Y}|}{\partial y_{ij}} = \frac{\partial \left(\sum_{p} (q_{jp} y_{pj})\right)}{\partial y_{ij}} \qquad \text{by (18)}$$
$$= \sum_{p} \left(q_{jp} \frac{\partial y_{pj}}{\partial y_{ij}}\right) = q_{ji} \frac{\partial y_{ij}}{\partial y_{ij}} = q_{ji} = (q^{T})_{ij} \qquad (19)$$

Because y_{ij} was arbitrary, for an entire matrix:

$$\frac{\partial |\mathbf{Y}|}{\partial \mathbf{Y}} = \mathbf{Q}^T \tag{20}$$

DETERMINANT DERIVATIVE, PART 2

Now, for an arbitrary pqth element of **X** (where **Y** depends on **X**):

$$\frac{\partial |\mathbf{Y}|}{\partial x_{pq}} = \sum_{i} \sum_{j} \left(\frac{\partial |\mathbf{Y}|}{\partial y_{ij}} \frac{\partial y_{ij}}{\partial x_{pq}} \right) \qquad \text{by (9)}$$

$$= \sum_{i} \sum_{j} \left(q_{ji} \frac{\partial y_{ij}}{\partial x_{pq}} \right) \qquad \text{by (19)}$$

$$= \frac{\partial \left(\sum_{i} \sum_{j} (q_{\mathbf{c}ji} y_{ij}) \right)}{\partial x_{pq}}$$

$$= \frac{\partial \operatorname{tr}(\mathbf{Q}_{c} \mathbf{Y})}{\partial x_{pq}} \qquad \text{by (5)}$$

Because x_{pq} was arbitrary, for an entire matrix:

$$\frac{\partial |\mathbf{Y}|}{\partial \mathbf{X}} = \frac{\partial \operatorname{tr}(\mathbf{Q}_c \mathbf{Y})}{\partial \mathbf{X}}$$
(21)

Let's say that we have

$$\mathbf{A} = \mathbf{X} + \mathbf{E}$$

where \mathbf{A} is the observation matrix, \mathbf{E} is a matrix of stochastic fluctuations with a mean of 0, and \mathbf{X} is our approximation to \mathbf{A} .

In Least Squares, our objective is to minimize the sum of squared errors:

$$SSE = e_{11}^{2} + e_{12}^{2} + \dots + e_{1n}^{2} + e_{21}^{2} + \dots + e_{2n}^{2} + \dots + e_{mn}^{2}$$

= $\sum_{i} \sum_{j} e_{ij}^{2}$
= $\sum_{i} \sum_{j} (e_{ij}e_{ij})$
= $\operatorname{tr}(\mathbf{E}^{T}\mathbf{E})$ by (5)

If we have no $\underline{\text{constraints}}$ on \mathbf{X} , then we are, equivalently, minimizing:

$$SSE = tr(\mathbf{E}^T \mathbf{E}) = tr[(\mathbf{A} - \mathbf{X})^T (\mathbf{A} - \mathbf{X})]$$

A minimization:

$$\begin{aligned} \frac{\partial(SSE)}{\partial \mathbf{X}} &= \frac{\partial \operatorname{tr}(\mathbf{E}^T \mathbf{E})}{\partial \mathbf{X}} = \frac{\partial \operatorname{tr}[(\mathbf{A} - \mathbf{X})^T (\mathbf{A} - \mathbf{X})]}{\partial \mathbf{X}} \\ &= \frac{\partial \operatorname{tr}(\mathbf{A}^T \mathbf{A} - \mathbf{A}^T \mathbf{X} - \mathbf{X}^T \mathbf{A} + \mathbf{X}^T \mathbf{X})}{\partial \mathbf{X}} \\ &= \frac{\partial[\operatorname{tr}(\mathbf{A}^T \mathbf{A}) - \operatorname{tr}(\mathbf{A}^T \mathbf{X}) - \operatorname{tr}(\mathbf{X}^T \mathbf{X}) + \operatorname{tr}(\mathbf{X}^T \mathbf{X})]}{\partial \mathbf{X}} \quad \text{by (1)} \\ &= \frac{\partial \operatorname{tr}(\mathbf{A}^T \mathbf{A})}{\partial \mathbf{X}} - \frac{\partial \operatorname{tr}(\mathbf{A}^T \mathbf{X})}{\partial \mathbf{X}} - \frac{\partial \operatorname{tr}(\mathbf{X}^T \mathbf{A})}{\partial \mathbf{X}} + \frac{\partial \operatorname{tr}(\mathbf{X}^T \mathbf{X})}{\partial \mathbf{X}} \\ &= 0 - \frac{\partial \operatorname{tr}(\mathbf{A}^T \mathbf{X})}{\partial \mathbf{X}} - \frac{\partial \operatorname{tr}(\mathbf{X}^T \mathbf{A})}{\partial \mathbf{X}} + \frac{\partial \operatorname{tr}(\mathbf{X}^T \mathbf{X})}{\partial \mathbf{X}} \end{aligned}$$

Continuing:

$$\frac{\partial (SSE)}{\partial \mathbf{X}} = -\frac{\partial \operatorname{tr}(\mathbf{A}^{T}\mathbf{X})}{\partial \mathbf{X}} - \frac{\partial \operatorname{tr}(\mathbf{X}^{T}\mathbf{A})}{\partial \mathbf{X}} + \frac{\partial \operatorname{tr}(\mathbf{X}^{T}\mathbf{X})}{\partial \mathbf{X}}$$
$$= -\mathbf{A} - \frac{\partial \operatorname{tr}(\mathbf{A}^{T}\mathbf{X})}{\partial \mathbf{X}} + \frac{\partial \operatorname{tr}(\mathbf{X}^{T}\mathbf{X})}{\partial \mathbf{X}} \qquad \text{by (13) \& (3)}$$
$$= -\mathbf{A} - \mathbf{A} + \frac{\partial \operatorname{tr}(\mathbf{X}^{T}\mathbf{X})}{\partial \mathbf{X}} \qquad \text{by (13)}$$
$$= -\mathbf{A} - \mathbf{A} + \frac{\partial \operatorname{tr}(\mathbf{X}^{T}\mathbf{IXI})}{\partial \mathbf{X}}$$
$$= -\mathbf{A} - \mathbf{A} + [\mathbf{I}^{T}\mathbf{X}\mathbf{I}^{T} + \mathbf{IXI}] \qquad \text{by (14)}$$
$$= -\mathbf{A} - \mathbf{A} + [\mathbf{X} + \mathbf{X}] = -2\mathbf{A} + 2\mathbf{X} \qquad (22)$$

RESULT

As in any **Least** Squares problem, we should set our derivative equal to 0 in order to find the minimum of the function.

$$\frac{\partial(SSE)}{\partial \mathbf{X}} = -2\mathbf{A} + 2\mathbf{X} = 0$$

 $2\mathbf{X} = 2\mathbf{A}$
 $\widehat{\mathbf{A}} = \mathbf{X} = \mathbf{A}$

Surprisingly, without **any** constraints on **X**, the <u>best</u> approximation of **A** is **A** itself.

Oh, the things you learn in calculus $\ddot{-}!$

LAGRANGE MULTIPLIERS

Pretend you have a function:

$f(\mathbf{X})$

To maximize or minimize $\underline{less than} mn$ restraints equivalent to

$$h(x_{11},\ldots,x_{mn})_{ij}=0$$

use LaGrange Multipliers u_{ij} (one for each restraint), and set

$$g(\mathbf{X}) = f(\mathbf{X}) + \sum_{i} \sum_{j} (u_{ij}h_{ij})$$
(23)

Finally, take the derivative with respect to \mathbf{X} , set equal to 0, and solve.

We still want to find an \mathbf{X} that minimizes the SSE to best approximate \mathbf{A} ; however, we are now subject to the constraint that \mathbf{X} is a Symmetric Matrix.

X Symmetric Means:

$$\mathbf{X} = \mathbf{X}^T$$
$$\mathbf{X} - \mathbf{X}^T = 0$$

The Recipe:

- We have our equation to minimize: $tr(\mathbf{E}^T \mathbf{E})$.
- **2** We have our constraint: $\mathbf{H} = \mathbf{X} \mathbf{X}^T = 0$.
- Put in LaGrange multiplier form.
- I Take the derivative.
- Set the derivative equal to 0.
- **6** Solve for **X**.

 $\underline{\text{First}}$ -- set up the problem:

$$g(\mathbf{X}) = f(\mathbf{X}) + \sum_{i} \sum_{j} (u_{ij} h_{ij})$$
 by (23)

$$= \operatorname{tr}(\mathbf{E}^{T}\mathbf{E}) + \operatorname{tr}[\mathbf{U}^{T}(\mathbf{X} - \mathbf{X}^{T})]$$

= $\operatorname{tr}(\mathbf{E}^{T}\mathbf{E}) + \operatorname{tr}(\mathbf{U}^{T}\mathbf{X}) - \operatorname{tr}(\mathbf{U}^{T}\mathbf{X}^{T})$ by (1)
= $\operatorname{tr}(\mathbf{E}^{T}\mathbf{E}) + \operatorname{tr}(\mathbf{U}^{T}\mathbf{X}) - \operatorname{tr}(\mathbf{U}\mathbf{X})$ by (3) & (4)

<u>Second</u> -- take the derivative:

$$\frac{\partial g(\mathbf{X})}{\partial \mathbf{X}} = \frac{\partial [\operatorname{tr}(\mathbf{E}^T \mathbf{E}) + \operatorname{tr}(\mathbf{U}^T \mathbf{X}) - \operatorname{tr}(\mathbf{U}\mathbf{X})]}{\partial \mathbf{X}}$$
$$= \frac{\partial \operatorname{tr}(\mathbf{E}^T \mathbf{E})}{\partial \mathbf{X}} + \frac{\partial \operatorname{tr}(\mathbf{U}^T \mathbf{X})}{\partial \mathbf{X}} - \frac{\partial \operatorname{tr}(\mathbf{U}\mathbf{X})}{\partial \mathbf{X}}$$
$$= -2\mathbf{A} + 2\mathbf{X} + \frac{\partial \operatorname{tr}(\mathbf{U}^T \mathbf{X})}{\partial \mathbf{X}} - \frac{\partial \operatorname{tr}(\mathbf{U}\mathbf{X})}{\partial \mathbf{X}} \qquad \text{by (22)}$$
$$= -2\mathbf{A} + 2\mathbf{X} + \mathbf{U} - \mathbf{U}^T \qquad \text{by (13)}$$

<u>Third</u> -- set the derivative equal to 0:

$$\frac{\partial g(\mathbf{X})}{\partial \mathbf{X}} = -2\mathbf{A} + 2\mathbf{X} + \mathbf{U} - \mathbf{U}^T = 0$$
$$2\mathbf{X} = 2\mathbf{A} + \mathbf{U}^T - \mathbf{U}$$
$$\mathbf{X} = \mathbf{A} + \frac{\mathbf{U}^T - \mathbf{U}}{2}$$

However, now note that: $\mathbf{X} = \mathbf{X}^T$

$$\mathbf{X}^{T} = \left(\mathbf{A} + \frac{\mathbf{U}^{T} - \mathbf{U}}{2}\right)^{T}$$
$$\mathbf{X}^{T} = \mathbf{A}^{T} + \frac{\mathbf{U} - \mathbf{U}^{T}}{2}$$

RESULT

<u>Fourth</u> -- add \mathbf{X}^T to both sides and solve for \mathbf{X} :

$$\mathbf{X} + \mathbf{X}^{T} = \mathbf{A} + \frac{\mathbf{U}^{T} - \mathbf{U}}{2} + \mathbf{A}^{T} + \frac{\mathbf{U} - \mathbf{U}^{T}}{2}$$
$$\mathbf{X} + \mathbf{X} = \mathbf{A} + \mathbf{A}^{T} + \frac{\mathbf{U}^{T} - \mathbf{U}}{2} - \frac{\mathbf{U}^{T} - \mathbf{U}}{2}$$
$$2\mathbf{X} = \mathbf{A} + \mathbf{A}^{T}$$
$$\widehat{\mathbf{A}} = \mathbf{X} = \frac{\mathbf{A} + \mathbf{A}^{T}}{2}$$

Therefore, to approximate \mathbf{A} with a Symmetric Matrix, the **best** matrix (according to the Least Squares Criterion) is the **average** of the elements of \mathbf{A} and the elements of \mathbf{A}^{T} .

The function we want to maximize:

$$u = |\mathbf{U}^{-1}(\mathbf{R} - \mathbf{F}\mathbf{F}^T)\mathbf{U}^{-1}|$$

1 R is a <u>correlation</u> matrix.

• $\operatorname{diag}(\mathbf{R}) = \mathbf{I}$

F is a factor pattern matrix of uncorrelated <u>common factors</u>.
U² is a covariance matrix of uncorrelated unique factors.

•
$$\mathbf{U}^2 = \operatorname{diag}(\mathbf{U}^2) = \mathbf{I} - \operatorname{diag}(\mathbf{F}\mathbf{F}^T)$$

The function we want to maximize:

$$u = |\mathbf{U}^{-1}(\mathbf{R} - \mathbf{F}\mathbf{F}^T)\mathbf{U}^{-1}|$$

The function u is a <u>likelihood ratio criterion</u> for a <u>test of independence</u> after the common factors have been partialed out of the covariance matrix.

 $\mathbf{U}^{-1}(\mathbf{R} - \mathbf{F}\mathbf{F}^T)\mathbf{U}^{-1}$ should be close to **I**, so *u* should be close to 1.

We want to find the \mathbf{F} (and consequently the \mathbf{U}^2) that results in a determinant as close to 1 as possible.

To make the derivatives simpler, let:

$$u_1 = |\mathbf{U}^{-2}|$$
 and $u_2 = |\mathbf{R} - \mathbf{F}\mathbf{F}^T|$

Note that:

$$u_1 u_2 = |\mathbf{U}^{-2}| |\mathbf{R} - \mathbf{F} \mathbf{F}^T| = |\mathbf{U}^{-1}| |\mathbf{R} - \mathbf{F} \mathbf{F}^T| |\mathbf{U}^{-1}| = |\mathbf{U}^{-1}(\mathbf{R} - \mathbf{F} \mathbf{F}^T) \mathbf{U}^{-1}|$$

Thus, we can use the product rule to find the derivative:

$$\frac{\partial u}{\partial \mathbf{F}} = \frac{\partial (u_1 u_2)}{\partial \mathbf{F}} = \frac{\partial u_1}{\partial \mathbf{F}} u_2 + u_1 \frac{\partial u_2}{\partial \mathbf{F}}$$
by (7)
CALCULATION: $\frac{\partial u}{\partial \mathbf{I}}$

Let's find the derivative of the first part.

$$\frac{\partial u_1}{\partial \mathbf{F}} = \frac{\partial |\mathbf{U}^{-2}|}{\partial \mathbf{F}} = \frac{\partial |\mathbf{U}^2|^{-1}}{\partial \mathbf{F}} \qquad \text{(by determinant rules)}$$
$$= \frac{\partial \operatorname{tr}(|\mathbf{U}^2|^{-1})}{\partial \mathbf{F}} \qquad \text{(since tr}(|\mathbf{X}|) = |\mathbf{X}|)$$
$$= -\frac{\operatorname{tr}(|\mathbf{U}^2|_c^{-2}|\mathbf{U}^2|)}{\partial \mathbf{F}} \qquad \text{by (16)}$$
$$= -|\mathbf{U}^2|^{-2}\frac{\partial |\mathbf{U}|^2}{\partial \mathbf{F}} \qquad (24)$$

Our next objective is to find the derivative of the highlighted part.

CALCULATION: $\frac{\partial u}{\partial I}$

Continuing:

$$\begin{aligned} \frac{\partial |\mathbf{U}|}{\partial \mathbf{F}} &= \frac{\partial |\mathbf{I} - \operatorname{diag}(\mathbf{F}\mathbf{F}^{T})|}{\partial \mathbf{F}} & \text{(by definition)} \\ &= \frac{\partial \operatorname{tr} \left(\mathbf{Q}_{c} [\mathbf{I} - \operatorname{diag}(\mathbf{F}\mathbf{F}^{T})] \right)}{\partial \mathbf{F}} & \text{by (21)} \\ &= \frac{\partial \operatorname{tr} (\mathbf{Q}_{c})}{\partial \mathbf{F}} - \frac{\partial \operatorname{tr} [\mathbf{Q}_{c} \operatorname{diag}(\mathbf{F}\mathbf{F}^{T})]}{\partial \mathbf{F}} & \text{by (1) \& (2)} \\ &= 0 - \frac{\partial \operatorname{tr} [\mathbf{Q}_{c} \operatorname{diag}(\mathbf{F}\mathbf{F}^{T})]}{\partial \mathbf{F}} \\ &= -\frac{\partial \operatorname{tr} [\mathbf{Q}_{c} \operatorname{diag}(\mathbf{F}\mathbf{F}^{T})]}{\partial \mathbf{F}} \end{aligned}$$

CALCULATION: $\frac{\partial u_1}{\partial \mathbf{F}}$

Based on (21), \mathbf{Q}_c is the <u>Adjoint</u> of $[\mathbf{I} - \text{diag}(\mathbf{F}\mathbf{F}^T)] = \mathbf{U}^2$.

Therefore:

$$\begin{aligned} |\mathbf{U}^2|^{-1}\mathbf{Q}_c &= (\mathbf{U}^2)^{-1} & \text{by (17)} \\ \mathbf{Q}_c &= |\mathbf{U}^2|(\mathbf{U}^{-2}) \end{aligned}$$

Because \mathbf{U}^2 is a diagonal matrix, $\mathbf{Q}_c = |\mathbf{U}^2|(\mathbf{U}^{-2})$ is a diagonal matrix.

And:

$$\frac{\partial |\mathbf{U}|}{\partial \mathbf{F}} = -\frac{\partial \operatorname{tr}[\mathbf{Q}_c \operatorname{diag}(\mathbf{F}\mathbf{F}^T)]}{\partial \mathbf{F}} = -\frac{\partial \operatorname{tr}[\operatorname{diag}(\mathbf{Q}_c \mathbf{F}\mathbf{F}^T)]}{\partial \mathbf{F}} = -\frac{\partial \operatorname{tr}(\mathbf{Q}_c \mathbf{F}\mathbf{F}^T)}{\partial \mathbf{F}}$$

Because the trace only **operates** on **the diagonal**, the trace of the diagonal of a matrix is the same as the trace of the original matrix.

CALCULATION: $\frac{\partial u}{\partial \mathbf{r}}$

Continuing:

$$\frac{\partial \operatorname{tr}(\mathbf{Q}_{c}\mathbf{F}\mathbf{F}^{T})}{\partial \mathbf{F}} = -\frac{\partial \operatorname{tr}(\mathbf{F}^{T}\mathbf{Q}_{c}\mathbf{F}\mathbf{I})}{\partial \mathbf{F}} \qquad \text{by (4)}$$
$$= -(\mathbf{Q}^{T}\mathbf{F}\mathbf{I}^{T} + \mathbf{Q}\mathbf{F}\mathbf{I}) \qquad \text{by (14)}$$
$$= -(\mathbf{Q}^{T} + \mathbf{Q})\mathbf{F}$$
$$= -2\mathbf{Q}\mathbf{F} \qquad (\mathbf{Q} \text{ is symmetric})$$
$$= -2|\mathbf{U}^{2}|\mathbf{U}^{-2}\mathbf{F} \qquad \text{by (17)}$$

And, thus:

$$\frac{\partial u_1}{\partial \mathbf{F}} = -|\mathbf{U}^2| \frac{\partial |\mathbf{U}|^2}{\partial \mathbf{F}} \qquad \text{by (24)}$$
$$= -|\mathbf{U}^2|^{-2}(-2|\mathbf{U}^2|\mathbf{U}^{-2}\mathbf{F})$$
$$= 2|\mathbf{U}^2|^{-1}\mathbf{U}^{-2}\mathbf{F}$$
$$= 2|\mathbf{U}^{-2}|\mathbf{U}^{-2}\mathbf{F} \qquad (25)$$

CALCULATION: $\frac{\partial u}{\partial t}$

Now, let's find the derivative of the second part.

$$\begin{aligned} \frac{\partial u_2}{\partial \mathbf{F}} &= \frac{\partial |\mathbf{R} - \mathbf{F} \mathbf{F}^T|}{\partial \mathbf{F}} \\ &= \frac{\partial \operatorname{tr}[\mathbf{Q}_c(\mathbf{R} - \mathbf{F} \mathbf{F}^T)]}{\partial \mathbf{F}} & \text{by (21)} \\ &= \frac{\partial \operatorname{tr}(\mathbf{Q}_c \mathbf{R})}{\partial \mathbf{F}} - \frac{\partial \operatorname{tr}(\mathbf{Q}_c \mathbf{F} \mathbf{F}^T)}{\partial \mathbf{F}} & \text{by (1) \& (2)} \\ &= \mathbf{0} - \frac{\partial \operatorname{tr}(\mathbf{F}^T \mathbf{Q}_c \mathbf{F} \mathbf{I})}{\partial \mathbf{F}} & \text{by (4)} \\ &= -(\mathbf{Q}^T + \mathbf{Q}) \mathbf{F} & \text{by (14)} \\ &= -2\mathbf{Q} \mathbf{F} & (\mathbf{Q} \text{ is symmetric}) \\ &= -2|\mathbf{R} - \mathbf{F} \mathbf{F}^T|(\mathbf{R} - \mathbf{F} \mathbf{F}^T)^{-1} \mathbf{F} & (26) \end{aligned}$$

CALCULATION: ENTIRE THING

Putting the pieces together:

$$\frac{\partial u}{\partial \mathbf{F}} = \frac{\partial u_1}{\partial \mathbf{F}} u_2 + u_1 \frac{\partial u_2}{\partial \mathbf{F}}$$

Which implies that

$$\begin{aligned} \frac{\partial u}{\partial \mathbf{F}} &= (2|\mathbf{U}^{-2}|\mathbf{U}^{-2}\mathbf{F})|\mathbf{R} - \mathbf{F}\mathbf{F}^{T}| \\ &+ |\mathbf{U}^{-2}|(-2|\mathbf{R} - \mathbf{F}\mathbf{F}^{T}|(\mathbf{R} - \mathbf{F}\mathbf{F}^{T})^{-1}\mathbf{F}) \end{aligned}$$

CALCULATION: FINDING MAXIMUM

To find the maximum of this function, we must set it equal to 0 and solve.

$$0 = 2|\mathbf{U}^{-2}|(\mathbf{U}^{-2}\mathbf{F})|\mathbf{R} - \mathbf{F}\mathbf{F}^{T}| - 2|\mathbf{U}^{-2}||\mathbf{R} - \mathbf{F}\mathbf{F}^{T}|(\mathbf{R} - \mathbf{F}\mathbf{F}^{T})^{-1}\mathbf{F}$$

$$0 = 2|\mathbf{U}^{-2}||\mathbf{R} - \mathbf{F}\mathbf{F}^{T}|(\mathbf{U}^{-2}\mathbf{F} - (\mathbf{R} - \mathbf{F}\mathbf{F}^{T})^{-1}\mathbf{F})$$

$$0 = \mathbf{U}^{-2}\mathbf{F} - (\mathbf{R} - \mathbf{F}\mathbf{F}^{T})^{-1}\mathbf{F}$$

CALCULATION: FINDING MAXIMUM

Finishing the calculation:

$$0 = \mathbf{U}^{-2}\mathbf{F} - (\mathbf{R} - \mathbf{F}\mathbf{F}^{T})^{-1}\mathbf{F}$$
$$(\mathbf{R} - \mathbf{F}\mathbf{F}^{T})^{-1}\mathbf{F} = \mathbf{U}^{-2}\mathbf{F}$$
$$\mathbf{F} = (\mathbf{R} - \mathbf{F}\mathbf{F}^{T})\mathbf{U}^{-2}\mathbf{F}$$
$$\mathbf{F} = \mathbf{R}\mathbf{U}^{-2}\mathbf{F} - \mathbf{F}\mathbf{F}^{T}\mathbf{U}^{-2}\mathbf{F}$$
$$\mathbf{R}\mathbf{U}^{-2}\mathbf{F} - \mathbf{F} = \mathbf{F}\mathbf{F}^{T}\mathbf{U}^{-2}\mathbf{F}$$
$$(\mathbf{R}\mathbf{U}^{-2} - \mathbf{I})\mathbf{F} = \mathbf{F}(\mathbf{F}^{T}\mathbf{U}^{-2}\mathbf{F})$$
(27)

RESULT

Based on the previous slide, we have

$$(\mathbf{R}\mathbf{U}^{-2} - \mathbf{I})\mathbf{F} = \mathbf{F}(\mathbf{F}^T\mathbf{U}^{-2}\mathbf{F})$$

Let $\mathbf{\Lambda} = (\mathbf{F}^T \mathbf{U}^{-2} \mathbf{F})$ be diagonal. Then

$$(\mathbf{R}\mathbf{U}^{-2} - \mathbf{I})(\mathbf{f}_1, \mathbf{f}_2, \dots, \mathbf{f}_n) = (\mathbf{f}_1, \mathbf{f}_2, \dots, \mathbf{f}_n) \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \vdots & \vdots \\ \vdots & \cdots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_n \end{pmatrix}$$
$$(\mathbf{R}\mathbf{U}^{-2} - \mathbf{I})(\mathbf{f}_1, \mathbf{f}_2, \dots, \mathbf{f}_n) = (\mathbf{f}_1\lambda_1, \mathbf{f}_2\lambda_2, \dots, \mathbf{f}_n\lambda_n)$$
$$(\mathbf{R}\mathbf{U}^{-2} - \mathbf{I})(\mathbf{f}_1, \mathbf{f}_2, \dots, \mathbf{f}_n) = (\lambda_1\mathbf{f}_1, \lambda_2\mathbf{f}_2, \dots, \lambda_n\mathbf{f}_n)$$

is an implicit eigenproblem.

- ► Schönemann, P. H. (1985). On the formal differentiation of traces and determinants. *Multivariate Behavioral Research*, 20, 113–139.
- ▶ Schönemann, P. H. (2001). Better never than late: Peer review and the preservation of prejudice. *Ethical Human Sciences and Services*, 3, 7–21.