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Introduction Notation

Notation

X: A matrix
x: A vector
x: A scalar

ϕ(x), ϕ(x), or ϕ(X): A scalar function
f(x), f(x), or f(X): A vector function
F(x), F(x), or F(X): A matrix function

xT or XT : The transpose of x or X
xij : The element in the ith row and jth column of X
(xT )ij : The element in the ith row and jth column of XT

D f(x): The derivative of the function f(x)
d f(x): The differential of the function f(x)
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Introduction Matrix Calculus: Idea Two

Basic Idea

Vector calculus is well established, but matrix calculus is difficult.

The paper written by Schöneman took one version of the “Calculus of
Vectors” and applied it to matrices:

1 The trace operator was a scalar function (of a matrix), that
essentially turned matrices into vectors and computed a dot
product between them.

tr(ATX) = vec(A)T vec(X)
vec is the vectorizing operator, stacking the columns of a matrix to
create a very long vector.

2 After applying the trace operator, an important subset of
maximization problems could be solved by an application of
standard vector calculus rules.
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Introduction Matrix Calculus: Idea Two

Basic Idea

The current paper is based off of the following idea.

1 First -- the entire treatment used differentials.
This would allow a vector function to remain a vector instead of
turning into a matrix.

2 Second -- the derivative was taken with respect to vec(X).
This would keep the problem as a vector derivative problem
instead of a matrix derivative problem.
Moreover, by undoing the vec operator, we would retain the correct
derivative matrix.
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Useful Matrix Algebra Rules

Matrix Algebra in Magnus

There are several matrix algebra properties and matrices that Magnus
references through his paper and book.

1 The Kronecker Product
2 The Vec/Vech Operator
3 The Duplication Matrix
4 The Commutation Matrix

I will go through these operators in some depth.
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Useful Matrix Algebra Rules Vectorized Operators

The Kronecker Product

The Kronecker Product: Transforms matrices A = m× n and
B = s× t into a matrix C = ms× nt.

A⊗B =


a11B a12B · · · ainB
a21B a11B · · · a2nB
...

...
...

...
am1B am2B · · · amnB

 (1)

The most important Kronecker properties are discussed on pp. 27–28 of
Magnus & Neudecker (1999).
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Useful Matrix Algebra Rules Vectorized Operators

The Vec Operator

The Vec Operator: Creates a vector from a matrix by stacking the
columns of the matrix.

Assume A is an m× n matrix such that:

A =
[
a1 a2 · · · an

]
where a1, a2, . . . ,an are the columns of A. Then:

vec(A) =


a1

a2
...

an

 (2)

Note that vec(A) is an mn× 1 column vector.
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Useful Matrix Algebra Rules Vectorized Operators

Vec and Kronecker

The vec operator is related to the Kronecker product as follows.

vec(abT ) = vec
[
ab1 ab2 · · · abn

]
=


ab1
ab2
...

abn

 =


b1a
b2a
...
bna

 = b⊗ a

Thus, as a basic rule
vec(abT ) = b⊗ a (3)

where a and b can be any size vectors.
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Useful Matrix Algebra Rules Vectorized Operators

Vec and Kronecker 2

Now, assume that AXC is a conformable matrix product.
Furthermore, let e1, e2, . . . , en be the columns (or rows) of a q × q
identity matrix, where q is the number of columns in X.

Then:
q∑

j=1

(xjeTj ) = x1

[
1 0 · · · 0

]
+ x2

[
0 1 · · · 0

]
+ · · ·+ xq

[
0 0 0 1

]
=
[
x1 0 · · · 0

]
+
[
0 x2 · · · 0

]
+ · · ·+

[
0 0 · · · xq

]
=
[
x1 x2 · · · xq

]
= X

A matrix can be written as a sum of a bunch of vectors.
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Useful Matrix Algebra Rules Vectorized Operators

Vec and Kronecker 2

Now, based on the last slide

vec(AXC) = vec

A

 q∑
j=1

(xjeTj )

C


= vec

 q∑
j=1

(AxjeTj C)


= vec

 q∑
j=1

[(Axj)(eTj C)]


because A and C are constants, (Axj) is a column vector, and (eTj C) is
a row vector.
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Useful Matrix Algebra Rules Vectorized Operators

Vec and Kronecker 2

We can continue deriving:

vec

 q∑
j=1

[(Axj)(eTj C)]

 =

q∑
j=1

vec[(Axj)(eTj C)]

=

q∑
j=1

[(eTj C)T ⊗ (Axj)] by (3)

=

q∑
j=1

[(CTej)⊗ (Axj)]

=

q∑
j=1

[(CT ⊗A)(ej ⊗ xj)]

because we can pull a sum outside of the vec operator.
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Useful Matrix Algebra Rules Vectorized Operators

Vec and Kronecker 2

Finally:

q∑
j=1

[(CT ⊗A)(ej ⊗ xj)] = (CT ⊗A)

q∑
j=1

(ej ⊗ xj)

= (CT ⊗A)

q∑
j=1

vec(xjeTj ) by (3)

= (CT ⊗A) vec

∑
j=1

(xjeTj )


= (CT ⊗A) vec(X) (4)

Therefore, a matrix product can be vectorized such that we only need
to perform the vec operator on one matrix.
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Useful Matrix Algebra Rules Vectorized Operators

The Vech Operator

The Vech Operator: Creates a vector from a symmetric matrix by
stacking the non-duplicate elements column-wise.

Assume A is a symmetric, square, n× n matrix.

A =


a11 a21 · · · an1
a21 a22 · · · an2
...

...
. . .

...
an1 an2 · · · ann

 vech(A) =



a11
a21
...
an1
a22
...
an2
...
ann


(5)
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Useful Matrix Algebra Rules Patterned Matrices

The Commutation Matrix

Magnus describes several useful patterned matrices.

One useful matrix: The Commutation Matrix.

Kmn such that Kmn vec(Am×n) = vec(AT
n×m) (6)

The number of rows and columns of K correspond to the length of
vec(A), because both vec(A) and vec(AT ) have the same number of
elements. Moreover, the unique matrix Kmn (with both mn rows and
columns) takes m→ n, or flips the columns to be the rows.

Note: The commutation matrix will always be square.
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Useful Matrix Algebra Rules Patterned Matrices

The Commutation Matrix

The commutation matrix changes a mn size vector into a nm size
vector, so it is square and of size mn×mn.

Moreover, the commutation matrix is just rearranging the elements of
the original vector, so it must be a rearranged identity matrix designed
to “pick off” the appropriate elements and put each in the correct place.

For instance:

A3×2 =

1 2
3 4
5 6

 K32 =



1 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 1


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Useful Matrix Algebra Rules Patterned Matrices

The Commutation Matrix

Thus:

K32 vec(A) = K32 vec

1 2
3 4
5 6

 =



1 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 1

×


1
3
5
2
4
6



=



1
2
3
4
5
6

 = vec
([

1 3 5
2 4 6

])
= vec(AT )
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Useful Matrix Algebra Rules Patterned Matrices

The Commutation Matrix

What is the commutation matrix for arbitrary vec(Xm×n)?

Given an m× n matrix X, vec(X) will be mn× 1:

1 Elements 1−m of vec(X) will correspond to column 1 of X.
2 Elements (m+1)− 2m of vec(X) will correspond to column 2 of X.
3 There will be n of these repeating sequences, one for each column

of X.

What are contained in the columns of Kmn:

1 The first m columns of Kmn will affect only the first m elements
of vec(X).

2 The second m columns of Kmn will affect only the second m
elements of vec(X).

3 There will be n of these blocks.
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Useful Matrix Algebra Rules Patterned Matrices

The Commutation Matrix

So the commutation matrix contains n column blocks each affecting a
particular column of X and corresponding to a particular set of m
elements in vec(X).

[
k1 k2 · · · km km+1 · · · km2 · · · km(n−1)+1 · · · kmn

]

The vertical lines separate the elements in different columns of X, and
each of the ki are elementary vectors. Why?
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Useful Matrix Algebra Rules Patterned Matrices

The Commutation Matrix

Now where does each element of a particular block go in the new
matrix?

We are turning vec(X) into vec(XT )

1 There are n rows (and m columns) in XT .
2 The first column block of Kmn takes the first column and puts it

in the first row.
3 The second column block of Kmn takes the second column and

puts it in the second row.
4 Because there are n rows in XT , elements in the first column of X

(directly next to each other in vec(X)) are now separated by n
elements in vec(XT ).

5 Because there are n rows in XT , elements in the second column of
X (directly next to each other in vec(X)) are now separated by n
elements in vec(XT ).
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Useful Matrix Algebra Rules Patterned Matrices

The Commutation Matrix

Therefore:

1 The columns of Kmn affect the elements of vec(X), in order.
2 The rows of Kmn represent the particular place of vec(XT ), in

order.
3 For the first column block of Kmn (affecting the first column of

X), there are n rows separating each element in XT .

So to create a commutation matrix...

1 Create an mn×mn size matrix
2 Divide the matrix into blocks of m columns

Write a line separating column m from column m+ 1 and column
2m from column 2m+ 1, etc.
There will be n such column blocks.
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Useful Matrix Algebra Rules Patterned Matrices

The Commutation Matrix

3 Divide the matrix into blocks of n rows.
Write a line separating row n from row n+ 1 and row 2n from row
2n+ 1, etc.
There will be m such row blocks.

4 The first n entries of vec(XT ) (corresponding to the first n rows of
Kmn) will be the elements directly to the right of the column
separators.

5 The second n entries of vec(XT ) (corresponding to the second n
rows of Kmn) will be the elements one column to the right of the
column separators, etc.
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Useful Matrix Algebra Rules Patterned Matrices

The Commutation Matrix

Or, as an example:

Kmn =



1 0 · · · 0 0 0 · · · 0 · · · 0 0 · · · 0
0 0 · · · 0 1 0 · · · 0 · · · 0 0 · · · 0
...

...
...

...
...

...
...

...
...

...
... · · ·

...
0 0 · · · 0 0 0 · · · 0 · · · 1 0 · · · 0

0 1 · · · 0 0 0 · · · 0 · · · 0 0 · · · 0
0 0 · · · 0 0 1 · · · 0 · · · 0 0 · · · 0
...

...
...

...
...

...
...

...
...

...
...

...
...

0 0 · · · 0 0 0 · · · 0 · · · 0 1 · · · 0
...

...
...

...
...

...
...

...
...

...
...

...
...

0 0 · · · 1 0 0 · · · 0 · · · 0 0 · · · 0
0 0 · · · 0 0 0 · · · 1 · · · 0 0 · · · 0
...

...
...

...
...

...
...

...
...

...
...

...
...

0 0 · · · 0 0 0 · · · 0 · · · 0 0 · · · 1


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Useful Matrix Algebra Rules Patterned Matrices

The Commutation Matrix

Now let B be a p× q matrix, X be a q × n matrix, and A be a m× n
matrix. Then

Kpm vec([BXAT ]p×m) = vec[(BXAT )T ]

= vec(AXTBT )

= (B⊗A) vec(XT ) by (4)
= (B⊗A)Kqn vec(Xq×n) by (6)

But because

Kpm vec(BXAT ) = Kpm(A⊗B) vec(X) by (4)

it follows that

(B⊗A)Kqn = Kpm(A⊗B) (7)
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Useful Matrix Algebra Rules Patterned Matrices

The Duplication Matrix

Another useful matrix: The Duplication Matrix.

Dn such that Dn vech(An×n) = vec(An×n) (8)

The number of rows of D correspond to the length of vec(A), and the
number of columns of D correspond to the length of vech(A).

Because vech(A) will always be shorter than vec(A), D will have at
least as many rows as columns.

Furthermore, the columns of D are linearly independent. Why?
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Useful Matrix Algebra Rules Patterned Matrices

The Duplication Matrix

The length of vec(A) is equal to the number of elements in A, and the
length of vec(A) is equal to the number of elements on the lower
triangle of A.

The number of rows of D is equal to n2.
n corresponds to the number of rows/columns of A.

The number of columns of D is equal to [n(n+ 1)/2].

Therefore:

Rows of Dn = n2 Columns of Dn =
n(n+ 1)

2
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Useful Matrix Algebra Rules Patterned Matrices

The Duplication Matrix

How does the duplication matrix appear?

Each column corresponding to an “off-diagonal” element of A will
have two 1s.
Each column corresponding to a “diagonal” element of A will only
have one 1.

A3×3 =

1 2 3
2 4 5
3 5 6

 D3 =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1


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Useful Matrix Algebra Rules Patterned Matrices

The Duplication Matrix

Why? Well, multiplying vech(A) by D3

D3 vech(A) = D3 vech

1 2 3
2 4 5
3 5 6

 =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1


×



1
2
3
4
5
6



=
[
1 2 3 2 4 5 3 5 6

]T
= vec

1 2 3
2 4 5
3 5 6


= vec(A)
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Useful Matrix Algebra Rules Patterned Matrices

The Duplication Matrix

What is the duplication matrix for arbitrary vech(Xm×n)?

Given an n× n matrix X, vec(X) will be [n(n+ 1)/2]× 1:

1 The first n elements of vech(X) will correspond to the first column
of X.

2 The next n− 1 elements of vech(X) will correspond to the second
column of X.

3 The next n− 2 elements of vech(X) will correspond to the third
column of X. ]

4 The last 1 element of vech(X) will correspond to the nth column of
X.

Note that vech(X) will affect ever decreasing elements in the columns.
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Useful Matrix Algebra Rules Patterned Matrices

The Duplication Matrix

So the duplication matrix contains n blocks each affecting a particular
column of X and corresponding to a particular set of elements in
vech(X).

[
d1 · · · dn dn+1 · · · dn+(n−1) · · · d[n(n+1)/2]

]

Rather than dividing blocks of the same length, the separators divide
blocks of increasingly shortening lengths because the number of
elements in vech(X) corresponding to a particular column of X
decreases by 1 in each column.

How many elements are in each column of Dn?
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Useful Matrix Algebra Rules Patterned Matrices

The Duplication Matrix

Now where does each element of a particular block go in the new
matrix?

We are turning vech(X) into vec(X)

1 There are n rows and n columns of X.
2 The first column block of Dn takes the first column and puts it in

the first column and first row.
3 The second column block of Dn takes the second column and puts

it in the second column and second row.
4 Because there are n rows in X, elements in the first column of X

are now both directly next to each other at one point and
separated by n elements at another point.
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Useful Matrix Algebra Rules Patterned Matrices

The Duplication Matrix

So to create a duplication matrix...

1 Create an n2 × [n(n+ 1)/2] size matrix.
2 Divide the matrix into column blocks of decreasing size, starting

with size n.
Write a line separating column n from column n+ 1 and column
n+ (n− 1) from column n+ (n− 1) + 1, etc.
There will be n such column blocks.
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Useful Matrix Algebra Rules Patterned Matrices

The Duplication Matrix

3 Divide the matrix into row blocks of size n.
Write a line separating row n from row n+ 1 and row 2n from row
2n+ 1, etc.
There will be n such row blocks.

4 The first n entries of vec(X) (corresponding to the first n rows of
Dn) will be the first n columns of Dn.

5 The second n entries of vec(X) will consist of the second column in
the first block of Dn followed by all of the entries in the second
block of Dn.

6 The third n entries of vec(X) will consist of the third column in
the first block of Dn followed by the second column in the second
block of Dn followed by all of the entries in the third block of Dn.
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Useful Matrix Algebra Rules Patterned Matrices

The Duplication Matrix

Or:

Dn =



1 0 · · · 0 0 · · · 0 · · · 0 0 0
0 1 · · · 0 0 · · · 0 · · · 0 0 0
...

...
. . .

...
...

...
...

...
...

...
...

0 0 · · · 1 0 · · · 0 · · · 0 0 0

0 1 · · · 0 0 · · · 0 · · · 0 0 0
0 0 · · · 0 1 · · · 0 · · · 0 0 0
...

...
...

...
...

. . .
...

...
...

...
...

0 0 · · · 0 0 · · · 1 · · · 0 0 0
...

...
...

...
...

...
...

...
...

...
...

0 0 · · · 1 0 · · · 0 · · · 0 0 0
0 0 · · · 0 0 · · · 1 · · · 0 0 0
...

...
...

...
...

...
...

...
...

...
...

0 0 · · · 0 0 · · · 0 · · · 0 1 0
0 0 · · · 0 0 · · · 0 · · · 0 0 1


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Useful Matrix Algebra Rules Patterned Matrices

Patterned Matrix Code

commutator <- function(m, n){
mn <- m*n
K <- matrix(0, mn, mn)
index <- 0
col <- 0

for(i in 1:n){
index <- index + 1
row <- index
for(j in 1:m){

col <- col + 1
K[row, col] <- 1
row <- row + n
}

}
return(K)

}

duplicator <- function(n){
D <- matrix(0, n^2, n*(n + 1)/2)
index <- n + 1; row <- 0
for(i in 1:n){

index <- index - 1; n2 <- n
col.blocksep <- n - index + 1
if(index != n){

for(k in (index + 1):n){
row <- row + 1
D[row, col.blocksep] <- 1
n2 <- n2 - 1
col.blocksep <- col.blocksep + n2

}}
for(j in 1:index){

row <- row + 1
col.ident <- col.blocksep + j - 1
D[row, col.ident] <- 1

}}
return(D)

}
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Vector Differential Calculus Continuity and Differentiability

Continuity and Accumulation

To understand the treatment of matrix calculus, we should review a few
definitions.

Continuity:

ϕ(c) is continuous at c if one of two things hold:
1 For any ε > 0, there exists a δ > 0 so ||u|| < δ forces
||ϕ(c+ u)− ϕ(c)|| < ε

Given any small distance past c in the y direction we can find points
close to c in the x direction.
Only applies to accumulation points.

2 c is not an accumulation point.

An accumulation point (or a cluster point) is just a limiting point,
meaning that f(c) is the limit of the function f(c+ u) as u→ 0.
Non accumulation points are also called isolated points or dots in
space, and are automatically continuous, but trivial.
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Vector Differential Calculus Continuity and Differentiability

Differentiability and Taylor Series

Taylor Series:

Using the Taylor Series, we can approximate any function with a
polynomial of any size.

ϕ(x) = ϕ(c) +
ϕ′(c)

1!
(x− c) + · · ·+ ϕ(n)(c)

n!
(x− c)n + . . .

=

∞∑
k=0

ϕ(k)(c)

k!
(x− c)k

=

p∑
k=0

ϕ(k)(c)

k!
(x− c)k + rc(x− c)

where rc (the remainder) usually converges at some rate.
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Vector Differential Calculus Continuity and Differentiability

Differentiability and Taylor Series

Taylor Series:

Replacing x with c+ u, so that u = x− a and

ϕ(c+ u) =

∞∑
k=0

ϕ(k)(c)

k!
(u)

=

p∑
k=0

ϕ(k)(c)

k!
(u)k + rc(u)

= ϕ(c) + uϕ′(c) + u2
ϕ′′(c)

2
+ r2c(u)

= ϕ(c) + uϕ′(c) + r1c(u)

The third line: “second-order Taylor formula”
The fourth line: “first-order Taylor formula”
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Vector Differential Calculus Continuity and Differentiability

Differentiability and Talor Series

Rewriting the equation on the previous page:

ϕ(c+ u)− ϕ(c)
u

= ϕ′(c) +
r1c(u)

u

We know, based on calculus that

lim
u→0

ϕ(c+ u)− ϕ(c)
u

= ϕ′(c)

which is the definition of the derivative and implies

lim
u→0

r1c(u)

u
= 0
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Vector Differential Calculus Continuity and Differentiability

Differentiability

Based on two slides ago, we have

ϕ(c+ u) = ϕ(c) + uϕ′(c) + r1c(u)

so that ϕ(c) + uϕ′(c) is the best linear approximation to the original
function. But the strength of the linear approximation depends on the
size of r1c(u).

The first differential:

dϕ(c;u) = uϕ′(c) (9)

Equation (9) is the linear part of ϕ(c+ u)− ϕ(c).
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Vector Differential Calculus Continuity and Differentiability

Multidimensional Taylor Series

We can expand to linearize a vector function:

f(c + u) = f(c) + A(c)u + rc(u)
= f(c) +D f(c)u + rc(u)

Now ||u|| → 0, df(c;u) = D f(c)u is called the differential, D f(c) is the
first derivative (Jacobian matrix), and ∇f(c) = D f(c)T is the Gradient
of f at c.

Letting ||u|| → 0 would be equivalent to setting w as a unit-length
vector, t as a scalar (such that tw = u) and making t→ 0 ... the
directional derivative approach.
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Vector Differential Calculus Continuity and Differentiability

Properties of the Differential

Note 1: For the differential to make sense, the original function must be
defined on a circle B(c; r) surrounding c with radius r, and
c + u ∈ B(c; r).

Note 2: If f : S → R, where f(S) is defined for a set S, and c is an
interior point of that set, the function is continuous at c, and each of
the partial derivatives exist in some small space surrounding c, then the
derivative exists at c.

Note 3: There is only one first derivative, and the rows of the Jacobian
are Gradients of a particular partial functions of the vector function f,
whereas the columns are the partial derivatives of f with respect to a
particular element of c.
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Vector Differential Calculus Continuity and Differentiability

Multivariate Chain Rule

If h(x) = g(f(x)), f(c) = b, and the function h is differentiable at c

Dh(c) = (Dg(b))(D f(c)) (10)

Expanding the multivariate chain rule:


∂h(c)1
∂c1

· · · ∂h(c)1
∂cn

... · · ·
...

∂h(c)k
∂c1

· · · ∂h(c)k
∂cn

 =


∂g(b)1
∂b1

· · · ∂g(b)1
∂bp

... · · ·
...

∂g(b)k
∂b1

· · · ∂g(b)k
∂bp




∂f(c)1
∂c1

· · · ∂f(c)1
∂cn

... · · ·
...

∂f(c)p
∂c1

· · · ∂f(c)p
∂cn


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Vector Differential Calculus Continuity and Differentiability

Multivariate Chain Rule

Keeping track of the multivariate chain rule is straightforward if
remembering that the “partial functions” go down the rows and the
“partial values” go across the columns.

If h = ϕ, a univariate function, and f = f(t), a multivariate function of
a scalar, the multivariate chain rule simplifies.

For example:

g(x) = x21 + 2x2 f(t) =
(
t+ 2 cos(t)

ln(t)

)
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Vector Differential Calculus Continuity and Differentiability

Multivariate Chain Rule

Functions:

g(x) = x21 + 2x2 f(t) =
(
t+ 2 cos(t)

ln(t)

)
Method 1:

ϕ(t) = g(f(t))

= (t+ 2 cos(t))2 + 2(ln(t))

= t2 + 4t cos(t) + 4 cos2(t) + 2 ln(t)

So
dϕ(t)

dt
= 2t+ 4t[− sin(t)] + 4 cos(t) + 8 cos(t)[− sin(t)] + 2(1/t)

= 2t− 4t sin(t) + 4 cos(t)− 8 cos(t) sin(t) + 2/t
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Vector Differential Calculus Continuity and Differentiability

Multivariate Chain Rule

Functions:

g(x) = x21 + 2x2 f(t) =
(
t+ 2 cos(t)

ln(t)

)
Method 2:

ϕ(t) = g(f(t))

So
dϕ(t)

dt
=
(
∂g(f(t))
∂f1(t)

∂g(f(t))
∂f2(t)

)(∂f1(t)
∂t

∂f2(t)
∂t

)

=
(
2
(
t+ 2 cos(t)

)
2
)(1− 2 sin(t)

1/t

)
= [2

(
t+ 2 cos(t)

)
][1− 2 sin(t)] + [2][1/t]

= 2t− 4t sin(t) + 4 cos(t)− 8 cos(t) sin(t) + 2/t
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Vector Differential Calculus Continuity and Differentiability

Multivariate Chain Rule

By virtue of the multivariate chain rule process

f : R −→ Rm

g : Rm −→ R
ϕ : R −→ R

Therefore, if ϕ is a scalar function of a scalar but has a vector as an
intermediate step, then we have the chain rule from vector calculus.

dϕ

dt
=

m∑
i=1

(
∂g

∂xi

∂xi
∂t

)
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Vector Differential Calculus Cauchy’s Rules and the Hessian

Cauchy’s Rule of Invariance

Cauchy’s Rule of Invariance:

When we apply the chain rule to a composite differential (instead of
only a derivative), the distances also sequentially apply.

dh(c;u) = Dh(c)u by (9)
= (D g(b))(D f(c))u by (10)
= D g(b) d f(c;u) by (9)
= d g[b; d f(c;u)] (11)

Moving a little bit in the u direction moves f(c) up a
particular amount, and moving f(c) up a particular amount
moves g(b) up a particular amount (because b and hence g(b)
depends on f(c)).
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Vector Differential Calculus Cauchy’s Rules and the Hessian

The Hessian

A real-valued function can be approximated with a 2nd degree
polynomial:

ϕ(c + u) = ϕ(c) +D(ϕ(c)) +
1

2
uTBu + r2c(u) (12)

as long as the remainder converges at a particular rate.

lim
||u||→0

=
r(u)
||u||2

= 0
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Vector Differential Calculus Cauchy’s Rules and the Hessian

Properties of the (Second) Differential

Properties of the second differential:

1 The second differential is just the differential of the first
differential.

2 The conditions for the second differential (and second derivative)
to exist are identical to the conditions for the first differential to
exist. We are just pretending that the first differential is our
original function.
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Vector Differential Calculus Cauchy’s Rules and the Hessian

The Hessian Matrix

Even though only one vector satisfies

dϕ(c;u) = a′u

an infinite number of matrices satisfy

d2ϕ(c;u) = uTB∗u

And the unique Hessian is defined as

Hϕ(c) =
1

2
(B(c) + B(c)T ) (13)
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Vector Differential Calculus Cauchy’s Rules and the Hessian

Cauchy’s Rule of Invariance: Part II

Unfortunately, the second differential is not Cauchy Invariant.

d2 h(c;u) 6= d2 g(b; d f(c;u))

Why? Well, by the original chain rule, we have

h′(c) = g′(f(c)) · f ′(c)

which implies that dh(c;u) = d g(b; d f(c;u)). But when taking the
second derivative, the product rule gets in the way:

h′′(c) = g′′(f(c)) · [f ′(c)]2 + g′(f(c)) · f ′′(c)
6= g′′(f(c)) · [f ′(c)]2
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Vector Differential Calculus Cauchy’s Rules and the Hessian

Cauchy’s Rule of Invariance: Part II

In other words:

1 In the original function, u is a constant with respect to c.
2 In the derivative function, d f(c;u) is no longer a constant with

respect to c.
Same reason why we must apply the product rule in the middle of
two chain rules.

Therefore

d2 h(c;u) = d2 g(b; d f(c;u)) + d g(b; d2 f(c;u)) (14)

by applying the product and chain rules to the first differential.
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Vector Differential Calculus Matrix Differential Calculus

The Transition: Part I

The transition from vector calculus to matrix calculus is
straightforward (according to Magnus).

Step 1: First, he addends his notation to consider matrix derivatives:

If for vector derivatives

D f(x) :=
∂f(x)
∂xT

then for matrix derivatives

DF(X) :=
∂F(X)

∂[vec(X)]T

He thus turns a matrix into a vector to apply the vector theory.
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Vector Differential Calculus Matrix Differential Calculus

The Transition: Part II

Step 2: Second, he addends his vector differentials to apply to matrices.

vec(dF(C;U)) = d vec(F(C;U)) = A(C) vec(U) (15)

Thus, every partial derivative is specified, the order is prespecified, and
the theory proceeds from the previous section.
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Vector Differential Calculus Matrix Differential Calculus

The Transition: Part III

Therefore, to find differentials w.r.t. matrices:

1 Apply the vec operator to both sides.
2 Take the differential of both sides.
3 Simplify until A(X) d vec(X) is on the right side.

A is a Matrix, and d vec(X) is a vector.
A must not depend on d vec(X).

4 A is the derivative.
5 Take the differential again.
6 Simplify until [d vec(X)]TB(X)[d vec(X)]

7 1
2(B(X) + B(X)T ) is the Hessian.
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Basic Differentials and Derivatives Preliminary Results

Basic Properties of Differentials

The first six differential/derivative rules:

dA = O (16)
d(αF) = α dF (17)

d(F + G) = dF + dG (18)
d trF = tr(dF) (19)

d(FG) = (dF)G + F(dG) (20)
d(F⊗G) = (dF)⊗G + F⊗ (dG) (21)

which are a consequence of the differential being a linear operator on
the derivative, and a derivative matrix being a matrix of derivatives.
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Basic Differentials and Derivatives Preliminary Results

Basic Properties of Differentials

For instance, take Equation (18):

d(F + G) = dF + dG

For an arbitrary element i in the differential vector

di(F + G) = Di.(F + G)Tu

where Di.(F + G)T is the ith row of D(F + G). Finally,

Di.(F + G)Tu =
∑
j

(Dij(F + G)uj)

=
∑
j

(Dij(F)uj) +
∑
j

(Dij(G)uj)

= di F + di G

Because linearity applies for an arbitrary element in the differential
vector, it holds for the entire vector of differentials.
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Basic Differentials and Derivatives Preliminary Results

Basic Properties of Differentials

Now, take Equation (20):

d(FG) = (dF)G + F(dG)

For an arbitrary element i, j

(d(FG))ij = d(FG)ij = d

(∑
k

fikgkj

)
=
∑
k

d(fikgkj)

=
∑
k

[(d fik)gkj + fik(d gkj)]

=
∑
k

[(d fik)gkj ] +
∑
k

[fik(d gkj)]

= [(dF)G]ij + [F(dG)]ij

Therefore, formulas that work on a linear operator of the derivative also
work on the differential.
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Basic Differentials and Derivatives Scalar Functions

Basic Scalar Functions: ϕ(x) = aTx

Our first function: ϕ(x) = aTx.

Then

dϕ(x) = d(aTx)

= aT dx by (17)

Thus

d(aTx) = aT dx (22)

D(aTx) = aT (23)
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Basic Differentials and Derivatives Scalar Functions

Basic Scalar Functions: ϕ(x) = xTAx

Our next function: ϕ(x) = xTAx.

Then

dϕ(x) = d(xTAx)

= d(xT )Ax + xT d(Ax) by (20)

= d(x)TAx + xTA d(x) by (17)

= xTAT d(x) + xTA d(x)

= [xT (AT + A)] d(x)

Thus

d(xTAx) = [xT (AT + A)] d(x) (24)

D(aTx) = xT (AT + A) (25)
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Basic Differentials and Derivatives Scalar Functions

Scalar Functions of Mat 1: ϕ(X) = aTXb

Our third function: ϕ(X) = aTXb.

Now the differential is with respect to a matrix.

d vec[ϕ(X)] = vec[dϕ(X)] by (15)

= vec[d(aTXb)]

= vec[aT (dX)b] by (17)

= bT ⊗ aT vec(dX) by (4)

= bT ⊗ aT d vec(X) by (15)
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Basic Differentials and Derivatives Scalar Functions

Scalar Functions of Mat 1: ϕ(X) = aTXb

According to the previous slide, the matrix differential of aTXb:

d vec[aTXb] = bT ⊗ aT d vec(X) (26)

Dvec[aTXb] = bT ⊗ aT = (b⊗ a)T (27)

Notice the (important) use of the vec to Kronecker rule.
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Basic Differentials and Derivatives Scalar Functions

Scalar Functions of Mat 2: ϕ(X) = aTXXTa

A slightly more complicated function: ϕ(X) = aTXXTa

By Equation (15), the matrix differential is as follows.

d vec[ϕ(X)] = vec[dϕ(X)] by (15)

= vec[d(aTXXTa)]

= vec[aT (dX)XTa + aTX d(XT )a] by (20) and (17)

= vec[aT (dX)XTa + aTX(dX)Ta]

= vec[aT (dX)XTa + (aTX(dX)Ta)T ] Scalar Transpose

= vec[aT (dX)XTa + aT (dX)XTa]

= vec[2aT (dX)XTa]
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Basic Differentials and Derivatives Scalar Functions

Scalar Functions of Mat 2: ϕ(X) = aTXXTa

Finishing:

vec[2aT (dX)XTa] = 2(XTa)T ⊗ aT vec(dX) by (4)

= [2(XTa)T ⊗ aT ] d vec(X) by (15)

Thus, the matrix differential of aTXXTa is

d vec[aTXXTa] = 2(XTa)T ⊗ aT d vec(X) (28)

Dvec[aTXb] = 2(XTa)T ⊗ aT = 2(XTa⊗ a)T (29)
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Basic Differentials and Derivatives Scalar Functions

Trace Functions

Finding the differential of trace functions use

tr(ATB) = vec(A)T vec(B) (30)

Why can we use Equation (30)? Well:

tr(ATB) =

m∑
j=1

n∑
i=1

(aijbij)

= vec(A)T vec(B)

Vectorizing a matrix and taking the dot product is equivalently
summing the squares of every entry in the matrix.
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Basic Differentials and Derivatives Scalar Functions

Trace Functions: tr(ATX)

The first trace function: tr(ATX).

d[tr(ATX)] = d[vec(A)T vec(X)] by (30)

= vec(A)T d vec(X) by (17)

And the matrix differential of tr(ATX):

d[tr(ATX)] = vec(A)T d vec(X) (31)

D[tr(ATX)] = vec(A)T (32)
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Basic Differentials and Derivatives Scalar Functions

Trace Functions: tr(Xp)

The next trace function: tr(Xp).

d[tr(Xp)] = tr[d(Xp)]

= tr[(dX)Xp−1 + X(dX)Xp−2 + · · ·+ Xp−1(dX)] by (20)

= tr[(dX)Xp−1] + tr[X(dX)Xp−2] + · · ·+ tr[Xp−1(dX)]

= tr[Xp−1(dX)] + tr[Xp−1(dX)] + · · ·+ tr[Xp−1(dX)]

= p tr[Xp−1(dX)]

= p vec([XT ]p−1)T d vec(X) by (30)

Both the second to third line and the third to fourth line use typical
trace rules (e.g., “linearity of traces” and “cyclic permutation”).
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Basic Differentials and Derivatives Scalar Functions

Trace Functions: tr(Xp)

And the matrix differential of tr(Xp):

d[tr(Xp)] = p vec([XT ]p−1)T d vec(X) (33)

D[tr(Xp)] = p vec([XT ]p−1)T (34)

Note that Equation (34) is similar to differentiating a polynomial scalar.
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Basic Differentials and Derivatives Scalar Functions

Trace Functions: tr(XTX)

The first power trace to differentiate: tr(XTX).

d tr(XTX) = tr[d(XTX)]

= tr[d(XT )X + XT d(X)] by (20)

= tr[d(X)TX] + tr[XT d(X)]

= tr[(d(X)TX)T ] + tr[XT d(X)]

= tr[XT d(X)] + tr[XT d(X)]

= 2 tr[XT d(X)]
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Basic Differentials and Derivatives Scalar Functions

Trace Functions: tr(XTX)

And we have

d tr(XTX) = 2 tr[XT d(X)]

= 2 vec(X)T d vec(X) by (30)

which implies

d tr(XTX) = 2 vec(X)T d vec(X) (35)

D tr(XTX) = 2 vec(X)T (36)
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Basic Differentials and Derivatives Scalar Functions

Trace Functions: tr(XAXB)

The next power trace function: tr(XAXB).

d tr(XAXB) = tr[d(XAXB)]

= tr[d(X)AXB + XA d(X)B] by (20)
= tr[AXB d(X) + BXA d(X)]

= tr[(AXB + BXA) d(X)]

= vec[(AXB + BXA)T ]T d vec(X) by (30)

And thus

d tr(XAXB) = vec[(AXB + BXA)T ]T d vec(X) (37)

D tr(XAXB) = vec[(AXB + BXA)T ]T (38)
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Basic Differentials and Derivatives Scalar Functions

Trace Functions: tr[(XTAXB)p]

The final scalar function: tr[(XTAXB)p]

This final function (in its more general state) captures the remaining
differentials on pages 358–359 of Magnus.

tr(XTX) =
∑
i

∑
j

x2ij =⇒ A = I, B = I, & p = 1

tr[(XTX)p] = tr[(XXT )p] =⇒ A = I & B = I
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Basic Differentials and Derivatives Scalar Functions

Trace Functions: tr[(XTAXB)p]

First, apply the product rule sequentially:

d[tr{(XTAXB)p}] = tr{d[(XTAXB)p]}
= tr{d[XTAXB](XTAXB)p−1

+ · · ·+ (XTAXB)p−1 d[XTAXB]}
= p tr{(XTAXB)p−1 d(XTAXB)}

Next, note that
d(XTAXB) = (dX)TAXB + XTA(dX)B

which is due to the product rule and multiplication by constants.
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Basic Differentials and Derivatives Scalar Functions

Trace Functions: tr[(XTAXB)p]

And replacing:

d[tr{(XTAXB)p}] = p tr{(XTAXB)p−1 d(XTAXB)}
= p tr{(XTAXB)p−1[(dX)TAXB + XTA(dX)B]}
= p tr{(XTAXB)p−1(dX)TAXB

+ (XTAXB)p−1XTA(dX)B]}
= p tr{[(XTAXB)p−1(dX)TAXB]T

+ (XTAXB)p−1XTA(dX)B]}
= p tr{BTXTAT (dX)[(XTAXB)p−1]T

+ (XTAXB)p−1XTA(dX)B]}
= p tr{[(XTAXB)p−1]TBTXTAT (dX)

+ (XTAXB)p−1XTA(dX)B]}
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Basic Differentials and Derivatives Scalar Functions

Trace Functions: tr[(XTAXB)p]

We ultimately have

d[tr{(XTAXB)p}] = p tr{[(XTAXB)p−1]TBTXTAT (dX)

+ (XTAXB)p−1XTA(dX)B]}
= p tr{[(XTAXB)p−1]TBTXTAT (dX)

+ B(XTAXB)p−1XTA(dX)]}
= p tr{[(XTAXB)p−1]TBTXTAT

+ B(XTAXB)p−1XTA](dX)}
= p vec{

(
[(XTAXB)p−1]TBTXTAT

+ B(XTAXB)p−1XTA
)T }T d vec(X)

= p vec{AX[B(XTAXB)p−1]

+ ATX[B(XTAXB)p−1]T }T d vec(X)
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Basic Differentials and Derivatives Scalar Functions

Trace Functions: tr[(XTAXB)p]

Which implies

d[tr{(XTAXB)p}] = p vec{AX[B(XTAXB)p−1]

+ ATX[B(XTAXB)p−1]T }T d vec(X) (39)

D[tr{(XTAXB)p}] = p vec{AX[B(XTAXB)p−1]

+ ATX[B(XTAXB)p−1]T }T (40)

Even though Equations (39) and (40) do not appear interesting, they
generalize to all matrix differentials on pages 358–359 of Magnus.

For instance:

D[tr(XTX)] = 1 vec{IX[I(XT IXI)0] + ITX[I(XT IXI)0]T }T

= vec[XI + XIT ]T

= vec[X + X]T = 2 vec(X)T
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Basic Differentials and Derivatives Scalar Functions

Trace Differentials

The standard process of computing trace differentials:

1 Put differential inside trace operator.
2 Usually perform standard product rule or chain rule.
3 Take transposes and rotate to get d(X) on the outside.
4 Combine terms.
5 Use the “trace to vec” identity.
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Basic Differentials and Derivatives Vector Functions

Vector Functions of Vec 1: f(x) = A(x)x

The first vector function: f(x) = A(x)x.

This is the most general function mentioned on pp. 360 in Magnus.
f(x) = A(x)x

If A depends on x, then

d[f(x)] = d[A(x)x]
= d[A(x)]x + A(x) dx by (20)
= vec{d[A(x)]x}+ A(x) dx
= vec{I d[A(x)]x}+ A(x) dx

= (xT ⊗ I) vec{d[A(x)]}+ A(x) dx

= (xT ⊗ I)Dvec[A(x)] dx + A(x) dx by (9)

=
[
(xT ⊗ I)Dvec[A(x)] + A(x)

]
dx (41)
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Basic Differentials and Derivatives Vector Functions

Vector Functions of Vec 2: f(x) = [xTx]a(x)

The second vector function: f(x) = [xTx]a(x).

If a depends on x, then

d f(x) = d{[xTx]a(x)}
= d[xTx]a(x) + xTx d[a(x)] by (20)

= d[xT Ix]a(x) + xTxD a(x) dx

= [xT (IT + I)] d(x)a(x) + xTxD a(x) dx by (24)

= [2xT ] d(x)a(x) + xTxD a(x) dx

= 2a(x)xT d(x) + xTxD a(x) dx

= [2a(x)xT + xTxD a(x)] dx (42)
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Basic Differentials and Derivatives Vector Functions

Vector Functions of Mat: f(X) = Xa

A vector function of a matrix: f(X) = Xa.

The second example of Magnus (f(X) = XT ) is redundant.

d[f(X)] = d[Xa]
= d[X]a by (17)
= vec(d[X]a)
= vec(I d[X]a)

= (aT ⊗ In) vec(dX) by (4)

= (aT ⊗ In) d vec(X) (43)

Steven W. Nydick 81/119



Basic Differentials and Derivatives Matrix Functions

Matrix Functions of Vec: F(x) = xxT

The first (and easiest) matrix function: F(x) = xxT .

To differentiate a matrix, first vectorize it:

d vec(F) = d vec(xxT )

= vec[d(xxT )]

= vec[d(x)xT + x d(xT )] by (20)

= vec[d(x)xT ] + vec[x d(xT )]

= vec[In d(x)xT ] + vec[x d(xT )In]

= (x⊗ In) d vec(x) + (In ⊗ x) d vec(xT ) by (4)
= (x⊗ In) d vec(x) + (In ⊗ x) d vec(x)
= [(x⊗ In) + (In ⊗ x)] d vec(x) (44)

Steven W. Nydick 82/119



Basic Differentials and Derivatives Matrix Functions

Matrix Functions of Mat 1: F(X) = X2

A matrix power to differentiate: F(X) = X2 (X is square).

d vec(F) = d vec(X2) = vec[d(XX)]

= vec[d(X)X + X d(X)] by (20)
= vec[I d(X)X] + vec[X d(X)I]

= (XT ⊗ In) d vec(X) + (In ⊗X) d vec(X)
by (4)

= [XT ⊗ In + In ⊗X] d vec(X) (45)

Make sure to vectorize first, and the differentials are easy.
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Basic Differentials and Derivatives Matrix Functions

Matrix Functions of Mat 2: F(X) = XT

Another matrix to differentiate: F(X) = XT (X is of size m× n).

Just remember that there is a commutation matrix to help.

d vec(F) = d vec(XT )

= d[Kmn vec(X)] by (6)
= [Kmn] d vec(X) (46)

Apply the commutation matrix prior to differentiating and then realize
that the commutation matrix is a constant with respect to X.
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Basic Differentials and Derivatives Matrix Functions

Matrix Functions of Mat 3: F(X) = XTX

Another matrix to differentiate: F(X) = XTX (X is of size m× n).

Also taking advantage of the commutation matrix.

d vec(F) = d vec(XTX)

= vec d(XTX)

= vec[d(XT )X + XT d(X)] by (20)

= vec[In d(XT )X] + vec[XT d(X)In]

= (XT ⊗ In) d vec(XT ) + (In ⊗XT ) d vec(X) by (4)

= (XT ⊗ In) d[Kmn vec(X)] + (In ⊗XT ) d vec(X) by (6)

= (XT ⊗ In)Kmn d vec(X) + (In ⊗XT ) d vec(X)

= [(XT ⊗ In)Kmn + (In ⊗XT )] d vec(X)
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Basic Differentials and Derivatives Matrix Functions

Matrix Functions of Mat 3: F(X) = XTX

By Equation (7)

Kpm(A⊗B) = (B⊗A)Kqn

where A is of size m× n and B is of size p× q.

Therefore, because X is of size m× n, XT is of size n×m, and I is of
size n× n, we have

d vec(F) = [(XT ⊗ In)Kmn + (In ⊗XT )] d vec(X)

= [Knn(In ⊗XT ) + In2(In ⊗XT )] d vec(X) by (7)

= [(Knn + In2)(In ⊗XT )] d vec(X) (47)
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Basic Differentials and Derivatives Matrix Functions

Matrix Functions of Mat 4: F(X) = XAXT

Another matrix to differentiate: F(X) = XAXT .

If A is symmetric and X is of size m× n, then

d vec(F) = d vec(XAXT )

= vec[d(XAXT )]

= vec[d(X)AXT + XA d(XT )] by (20)

= vec[d(X)AXT ] + vec[XA d(XT )]

= vec[Im d(X)AXT ] + vec[XA d(XT )Im]

= ([AXT ]T ⊗ Im) d vec(X) + (Im ⊗XA) d vec(XT ) by (4)
= (XA⊗ Im) d vec(X) + (Im ⊗XA) d[Kmn vec(X)] by (6)
= (XA⊗ Im) d vec(X) + (Im ⊗XA)Kmn d vec(X)
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Basic Differentials and Derivatives Matrix Functions

Matrix Functions of Mat 4: F(X) = XAXT

Continuing:

d vec(F) = (XA⊗ Im) d vec(X) + (Im ⊗XA)Kmn d vec(X)

= Im2(XA⊗ Im) d vec(X) + Kmm(XA⊗ Im) d vec(X) by (7)
= [(Im2 + Kmm)(XA⊗ Im)] d vec(X) (48)

Make sure to remember the order of the commutation matrices.

Kmn vec(Am×n) = vec(AT
n×m)

Kpm(Am×n ⊗Bp×q) = (Bp×q ⊗Am×n)Kqn
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Basic Differentials and Derivatives Matrix Functions

Matrix Functions of Mat 5: F(X) = XTAXT

A final matrix function F(X) = XTAXT .

d vec(F) = d vec(XTAXT )

= vec[d(XTAXT )]

= vec[d(XT )AXT + XTA d(XT )] by (21)

= vec[d(XT )AXT ] + vec[XTA d(XT )]

= vec[In d(XT )AXT ] + vec[XTA d(XT )Im]

= (XAT ⊗ In) d vec(XT ) + (Im ⊗XTA) d vec(XT ) by (4)

= (XAT ⊗ In) d[Kmn vec(X)] + (Im ⊗XTA) d[Kmn vec(XT )]
by (6)

= (XAT ⊗ In)Kmn d vec(X) + (Im ⊗XTA)Kmn d vec(X)

= {[(XAT ⊗ In) + (Im ⊗XTA)]Kmn} d vec(X) (49)
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Differentials of Special Matrices The Inverse

Differential of The Inverse: F(X) = X−1

The differential of the inverse is a “once seen, never forgotten” problem.

Note that if X is invertible, then

XX−1 = X−1X = I

A matrix times its inverse is the identiy matrix.

And the differential of the left size is equivalent to that of the right side:

The right side is a constant (I), and what is the differential of
a constant?
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Differentials of Special Matrices The Inverse

Differential of The Inverse: F(X) = X−1

Because

d(I) = 0 by (16)

We have

d(X−1X) = d(I)

d(X−1X) = 0 by (16)

d(X−1)X + X−1 d(X) = 0 by (21)

d(X−1)X = −X−1 d(X)

d(X−1) = −X−1 d(X)X−1

And

d(X−1) = −X−1 d(X)X−1 (50)
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Differentials of Special Matrices The Inverse

Differential of the Inverse

To differentiate a function that involves the inverse of X:

1 Vectorize everything.
2 Perform standard rules:

Multiplication rules
Chain rules
Pulling out constants

3 Isolate d(X−1).
4 Perform the diff-of-inverse rule.
5 Separate particular linear combinations and use trace rules
6 Use the vec → Kronecker rule or trace → vec rule.
7 Fiddle with transposes and Kmn, and recombine terms.
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Differentials of Special Matrices The Inverse

Inverse Example 1: ϕ(X) = tr(AX−1)

An example of inverse differentials: ϕ(X) = tr(AX−1).

dϕ(X) = d tr(AX−1)

= tr[d(AX−1)]

Perform standard rules (e.g., multiplication by a constant).

dϕ(X) = tr[d(AX−1)]

= tr[A d(X−1)]

Perform the diff-of-inverse rule.

dϕ(X) = tr[A d(X−1)]

= tr[A(−1X−1 d(X)X−1)] = −1 tr(AX−1 d(X)X−1) by (50)
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Differentials of Special Matrices The Inverse

Inverse Example 1: ϕ(X) = tr(AX−1)

Use trace identities (e.g., transposing and rotating).

dϕ(X) = −1 tr(AX−1 d(X)X−1)

= − tr[X−1AX−1 d(X)]

And finally, perform the trace → vec rule.

dϕ(X) = − tr[X−1AX−1 d(X)]

= − vec[(X−1AX−1)T ]T d vec(X) (51)
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Differentials of Special Matrices The Inverse

Inverse Example 2: M = In −X(XTX)−1XT

The next example is a strange matrix function.

M = In −X(XTX)−1XT

M is idempotent (so the square of itself is itself).

M2 = (In −X(XTX)−1XT )(In −X(XTX)−1XT )

= I2n − In[X(XTX)−1XT ]− [X(XTX)−1XT ]In
+ [X(XTX)−1XT ]2

= In − 2[X(XTX)−1XT ] + [X(XTX)−1XT ][X(XTX)−1XT ]

= In − 2X(XTX)−1XT + X(XTX)−1(XTX)(XTX)−1XT

= In − 2X(XTX)−1XT + X(XTX)−1XT

= In −X(XTX)−1XT = M
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Differentials of Special Matrices The Inverse

Inverse Example 2: M = In −X(XTX)−1XT

M = In −X(XTX)−1XT might look pretty familiar.

H = X(XTX)−1XT (52)

maps y into the column space defined by the predictors, but

M = In −X(XTX)−1XT (53)

maps y into the space orthogonal to the predictors (the error space).

Hy = ŷ My = ε̂
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Differentials of Special Matrices The Inverse

Inverse Example 2: M = In −X(XTX)−1XT

To find the differential, perform standard (e.g., product) rules.

d(M) = d(In −X(XTX)−1XT )

= − d(X(XTX)−1XT )

= −[d(X)(XTX)−1XT + X d[(XTX)−1]XT

+ X(XTX)−1 d(XT )] by (21)

Concentrate on the inverse differential.

d[(XTX)−1] = −(XTX)−1 d(XTX)(XTX)−1 by (50)

= −(XTX)−1[d(XT )X + XT d(X)](XTX)−1 by (21)
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Differentials of Special Matrices The Inverse

Inverse Example 2: M = In −X(XTX)−1XT

Plug the differential back in the equation.

d(M) = −[d(X)(XTX)−1XT + X d[(XTX)−1]XT

+ X(XTX)−1 d(XT )]

= −[d(X)(XTX)−1XT

+ X[−(XTX)−1[d(XT )X + XT d(X)](XTX)−1]XT

+ X(XTX)−1 d(XT )]

= −[d(X)(XTX)−1XT

−X(XTX)−1 d(XT )X(XTX)−1XT

−X(XTX)−1XT d(X)(XTX)−1XT + X(XTX)−1 d(XT )]

= −[In d(X)(XTX)−1XT −X(XTX)−1XT d(X)(XTX)−1XT

+ X(XTX)−1 d(XT )In −X(XTX)−1 d(XT )X(XTX)−1XT ]

= −[M d(X)(XTX)−1XT + X(XTX)−1 d(XT )M]
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Differentials of Special Matrices The Inverse

Inverse Example 2: M = In −X(XTX)−1XT

And finally vectorizing everything.

d vec(M) = − vec[M d(X)(XTX)−1XT + X(XTX)−1 d(XT )M]

= − vec[M d(X)(XTX)−1XT ]− vec[X(XTX)−1 d(XT )M]

which leads to the vec → Kronecker rule.

d vec(M) = − vec[M d(X)(XTX)−1XT ]− vec[X(XTX)−1 d(XT )M]

= −[(XTX)−1XT )T ⊗M] d vec(X)

− [MT ⊗X(XTX)−1] d vec(XT )
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Differentials of Special Matrices The Inverse

Inverse Example 2: M = In −X(XTX)−1XT

And then applying the commutation matrix,

d vec(XT ) = Kmn d vec(X)

on the above function.

d vec(M) = −[(XTX)−1XT )T ⊗M] d vec(X)

− [MT ⊗X(XTX)−1] d vec(XT )

= −[X(XTX)−1 ⊗M] d vec(X)

− [M⊗X(XTX)−1]Kmn d vec(X) by (6)

= −Im2 [X(XTX)−1 ⊗M] d vec(X)

−Kmm[X(XTX)−1 ⊗M] d vec(X) by (7)

= −(Im2 + Kmm)[X(XTX)−1 ⊗M] d vec(X) (54)

Steven W. Nydick 100/119



Differentials of Special Matrices The Inverse

Inverse Example 3: F(X) = AX−1AT

A third example: F(X) = AX−1AT (X is symmetric).

If X is symmetric, then X−1 is symmetric and d(X) is symmetric.

Find the differential w.r.t. d vec(X), but use the duplication matrix to
limit the number of freely varying terms to those on the lower diagonal.
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Differentials of Special Matrices The Inverse

Inverse Example 3: F(X) = AX−1AT

To differentiate a symmetric matrix:

1 Take the full d vec[F(X)] differential.
2 Simplify as in every other differential.
3 After d vec(X) is isolated, use the duplication matrix inside the

differential operator to restrict vec(X) = Dn vech(X).
4 Pull Dn outside of the differential operator because it is constant

with respect to X.
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Differentials of Special Matrices The Inverse

Inverse Example 3: F(X) = AX−1AT

First, taking differentials.

d[F(X)] = d[AX−1AT ]

= A d(X−1)AT by (16)

= A[−X−1 d(X)X−1]AT by (50)

= −AX−1 d(X)X−1AT

Then vectorizing the differential.

vec[d(F)] = vec[−AX−1 d(X)X−1AT ]

= − vec[AX−1 d(X)X−1AT ]

= −[(X−1AT )T ⊗ (AX−1)] d vec(X) by (4)
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Differentials of Special Matrices The Inverse

Inverse Example 3: F(X) = AX−1AT

Continuing:

vec[d(F)] = −[(X−1AT )T ⊗ (AX−1)] d vec(X)

= −[AX−1 ⊗AX−1] d vec(X) by the Symmetry of X−1

We can finally impose the duplication identity.

vec[d(F)] = −[AX−1 ⊗AX−1] d[vec(X)] (55)

= −[AX−1 ⊗AX−1] d[Dn vech(X)] (56)

= −[AX−1 ⊗AX−1]Dn d vech(X) (57)
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Differentials of Special Matrices The Inverse

Inverse Example 4: ϕ = ıTX−1ı

Assume ı is a vector of 1s. Then

ϕ = ıTX−1ı

is the sum of all of the elements in X−1.

Now, if X is symmetric, then

d vec(ϕ) = vec[d(ıTX−1ı)]

= vec[ıT d(X−1)ı] by (16)

= − vec[ıTX−1 d(X)X−1ı] by (50)

= −[(X−1ı)T ⊗ ıTX−1] d vec(X) by (4)

= −[ıTX−1 ⊗ ıTX−1]Dn d vech(X) (58)
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Differentials of Special Matrices The Exponential and Logarithm

The Exponential: The Special Case

The Maclaurin Series is just the Taylor Series with the constant set to 0.

ϕ(x) =

∞∑
k=0

ϕ(k)(0)

k!
xk

The definition of the Exponential Function:
(I) The derivative of ex equals ex.

(II) ϕ(k)(0) = 1 for all k.
... which leads to the Maclaurin representation:

ex =

∞∑
k=0

xk

k!
= 1 + x+

x2

2
+
x3

6
+
x4

24
+ . . .

We could also replace x with any function of x.

ef(x) =

∞∑
k=0

f(x)k

k!
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Differentials of Special Matrices The Exponential and Logarithm

The Exponential: The Special Case

To find the differential of an exponential function, expand the function
as a Maclaurin series and differentiate.

An example function for the exponential: xA.

d(exA) = d

( ∞∑
k=0

(xA)k

k!

)
=

∞∑
k=0

d

(
xkAk

k!

)
=

∞∑
k=0

d(xkAk)

k!

=

∞∑
k=0

d(xk)Ak

k!
by (16)

=

∞∑
k=0

[kxk−1 dx]Ak

k!

=

∞∑
k=0

xk−1Ak

(k − 1)!
dx
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Differentials of Special Matrices The Exponential and Logarithm

The Exponential: The Special Case

Factorials do not exist for negative numbers, so change the boundaries.

d(exA) =

∞∑
k=0

xk−1Ak

(k − 1)!
dx =

∞∑
k=1

xk−1[AAk−1]

(k − 1)!
dx

= A
∞∑
k=1

xk−1Ak−1

(k − 1)!
dx

And set m = k − 1:

d(exA) = A
∞∑
k=1

xk−1Ak−1

(k − 1)!
dx = A

∞∑
m=0

xmAm

m!
dx

Noticing that the summation is equal to the original exponenent:

d(exA) = A
∞∑

m=0

xmAm

m!
dx = A

∞∑
m=0

(xA)m

m!
dx = AexA dx (59)
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Differentials of Special Matrices The Exponential and Logarithm

The Exponential: The General Case

By analogy, define a matrix exponential.

exp(X) =

∞∑
k=0

[
1

k!
Xk

]
(60)

To take the derivative of a matrix exponential, follow similar steps.

dF(X) = d[exp(X)]

= d

( ∞∑
k=0

[
1

k!
Xk

])

=

∞∑
k=0

[
1

k!
d(Xk)

]
by (16)

=
∞∑
k=0

[
1

k!

(
(dX)Xk−1 + X(dX)Xk−2 + · · ·+ Xk−1(dX)

)]
by (21)
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Differentials of Special Matrices The Exponential and Logarithm

The Exponential: The General Case

Continuing:

dF(X) =

∞∑
k=0

[
1

k!

(
(dX)Xk−1 + X(dX)Xk−2 + · · ·+ Xk−1(dX)

)]

=

∞∑
k=0

 1

k!

k−1∑
j=0

(
Xj(dX)Xk−j−1

)
=

∞∑
k=1

 1

k!

k−1∑
j=0

(
Xj(dX)Xk−j−1

)
Note that the bounds change because 0 ≤ j ≤ k − 1, but if k = 0, then
0 ≤ j ≤ 0− 1 = −1, which is a contradition.
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Differentials of Special Matrices The Exponential and Logarithm

The Exponential: The General Case

Setting m = k − 1, so k = m+ 1.

dF(X) =

∞∑
k=1

 1

k!

k−1∑
j=0

(
Xj(dX)Xk−j−1

)
=

∞∑
m=0

 1

(m+ 1)!

m∑
j=0

(
Xj(dX)Xm−j

)
Because everything until the Xj(dX)Xm−j is a scalar, we have

tr
(
d[exp(X)]

)
= tr

 ∞∑
m=0

 1

(m+ 1)!

m∑
j=0

(
Xj(dX)Xm−j

)
=

∞∑
m=0

 1

(m+ 1)!

m∑
j=0

tr
(
Xj(dX)Xm−j

)
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Differentials of Special Matrices The Exponential and Logarithm

The Exponential: The General Case

Finishing:

tr
(
d[exp(X)]

)
=

∞∑
m=0

 1

(m+ 1)!

m∑
j=0

tr
(
Xj(dX)Xm−j

)
=

∞∑
m=0

[
1

(m+ 1)!
(m+ 1) tr

(
Xm−jXj(dX)

)]

= tr

( ∞∑
m=0

[
1

m!
Xm

]
(dX)

)
= tr

[
exp(X) d(X)

]
= vec[exp(X)T ]T d vec(X) (61)

Note that we must take traces to obtain a sensible result.
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Differentials of Special Matrices The Exponential and Logarithm

The Logarithm: The Special Case

The Mercator Series is the Maclaurin Series Expansion for ln(1 + x):

ln(1 + x) =

∞∑
k=0

ϕ(k)(0)

k!
xk

= ϕ(0) + ϕ′(0)x+
ϕ′′(0)x2

2!
+
ϕ(3)(0)x3

3!
+
ϕ(4)x4(0)

4!
+ . . .

= ln(1 + 0) +
x

1 + 0
+ (−1) x2

2!(1 + 0)2
+ (−2)(−1) x3

3!(1 + 0)3
+ . . .

= 0 + x− x2

2
+
x3

3
− x4

4
+ · · · =

∞∑
k=1

(−1)k+1xk

k

Replacing x with −x, all terms in the sum become negative.

ln(1− x) = −x− x2

2
− x3

3
− x4

4
− · · · = −

∞∑
k=1

xk

k
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Differentials of Special Matrices The Exponential and Logarithm

The Logarithm: The Special Case

To find the differential of a logarithmic function, expand as a Mercator
series and differentiate.

An example function for the logarithm: xA.

d
[
ln(In − xA)

]
= d

[
−
∞∑
k=1

(xA)k

k

]
= −

∞∑
k=1

d(xk)Ak

k
by (16)

= −
∞∑
k=1

kxk−1 dxAk

k

= −A
∞∑
k=1

[xk−1Ak−1] dx

= −A
∞∑

m=0

[xA]m dx

The last line involved the changing-indices trick.
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Differentials of Special Matrices The Exponential and Logarithm

The Logarithm: The Special Case

And if |x| < 1 then, due to the geometric series,

∞∑
k=0

xk =
1

1− x

By analogy, if x and A satisfy a similar constraint, then

d
[
ln(In − xA)

]
= −A

∞∑
m=0

[xA]m dx

= −A(In − xA)−1 dx

= −A(In − xA)−1 dx (62)
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Differentials of Special Matrices The Exponential and Logarithm

The Logarithm: The General Case

For the multivariate case, define:

ln(In −X) = −
∞∑
k=1

[
1

k
Xk

]
To take the differential of ln(In −X), notice that we ultimately use the
same expansion as for the exponential differential.

dF(X) = d
[
ln(In −X)

]
= d

(
−
∞∑
k=1

[
1

k
Xk

])

= −
∞∑
k=1

[
1

k
d(Xk)

]
by (16)

= −
∞∑
k=1

1
k

k−1∑
j=0

(
Xj(dX)Xk−j−1

)
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Differentials of Special Matrices The Exponential and Logarithm

The Logarithm: The General Case

Setting m = k − 1, so k = m+ 1:

dF(X) = −
∞∑
k=1

1
k

k−1∑
j=0

(
Xj(dX)Xk−j−1

)
= −

∞∑
m=0

 1

m+ 1

m∑
j=0

(
Xj(dX)Xm−j

)
Because everything until the Xj(dX)Xm−j is a scalar, we have

tr
(
d
[
ln(In −X)

])
= tr

− ∞∑
m=0

 1

m+ 1

m∑
j=0

(
Xj(dX)Xm−j

)
= −

∞∑
m=0

 1

m+ 1

m∑
j=0

tr
(
Xj(dX)Xm−j

)
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Differentials of Special Matrices The Exponential and Logarithm

The Logarithm: The General Case

Finishing:

tr
(
d
[
ln(In −X)

])
= −

∞∑
m=0

 1

m+ 1

m∑
j=0

tr
(
Xj(dX)Xm−j

)
= −

∞∑
m=0

[
1

m+ 1
(m+ 1) tr

(
Xm−jXj(dX)

)]

= − tr

( ∞∑
m=0

[
Xm

]
(dX)

)
= − tr

[
(In −X)−1 dX

]
= − vec

[[
(In −X)−1

]T ]T d vec(X) (63)

Differentials of both exponentials and logarithms for multivariate functions
behave in similar way to the univariate case but inside of trace operators.
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