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Notation

Notation

j = 1, 2, . . . , J Item Enumeration
i = 1, 2, . . . , n Examinee Enumeration
k = 1, 2, . . . , q Group Enumeration
yij = {1, 0} Response of examinee i to item j

Yi = (yi1, yi2, . . . , yiJ) Response vector of examinee i
aj , bj , cj Parameters of item j

φj ,Φ Vector/Matrix of “true” item parameters

Γ Parameters of population ability distribution
θi True ability of examinee i
Xk True ability of group k
nkj Number of attempts by group k to item j

rkj Number of correct by group k to item j

Pj(θi) = Pr(yij = 1|θi, φj) Qj(θi) = 1− Pj(θi) = Pr(yij = 0|θi, φj)
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Maximum Likelihood Estimation

A Brief History

Maximum likelihood estimation was introduced by R.A. Fisher in 1912.

Reasons we use it in statistics include the following.

1 We want to estimate distribution parameters.
2 MLE is an Intuitive method of estimation.
3 MLE typically results in consistent estimate of parameters.

MLE is the most widely used estimation method in statistics.
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Maximum Likelihood Estimation

Likelihood: An Outline

First, define a likelihood function.

1 Let x = (x1, x2, . . . , xn) be a response vector from distribution
f(x|Γ).

Γ are the parameters of the distribution.

2 Then a “probability density function” fn(x|Γ) provides the
“likelihood” of observing Γ.

If we know Γ but do not know x, then

f [(x1, x2)|Γ] = f(x1|Γ) · f(x2|Γ)

assuming independence.
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Maximum Likelihood Estimation

Probability of a Vector

And assuming independence of all responses, we have

f(x = (x1, x2, . . . , xn)|Γ) =

n∏
i=1

f(xi|Γ) = fn(x|Γ)

This is the “probability” of observing a vector, so order matters.

The trick to likelihood inference is turning the pdf on its head:
Assume that we have a density distribution where we know x
and we are looking at the likelihood of observing the
parameters.

Probability: events that havent happened yet
Likelihood: events that have already happened
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Maximum Likelihood Estimation

The Maximum Likelihood

How can we estimate the parameters after knowing x?

The maximum of the likelihood might be a good idea. Why?

1 The simple answer: Most of the stuff is in the small space
surrounding the maximum of the likelihood.

Stuff indicates “likelihood of parameters.”

2 The complex answer: The MLE is generally consistent, efficient,
and asymptotically normal.
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Maximum Likelihood Estimation

The Maximum Likelihood: A Visual

The following is an example of a likelihood function with two variables.
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Maximum Likelihood Estimation

The Maximum Likelihood: A Method

So, solve the following equation.

d[fn(x|Γ)]

dΓ
=
d[
∏n

i=1 f(xi|Γ)]

dΓ
= 0

... which will be a gradient if there is more than one parameter.

But a bunch of product terms is a pain.

However, ln(x) = log(x) is a really nice function:

1 ln(x) is monotonically increasing, so the maximum doesn’t change.
2 ln(x1 · x2) = ln(x1) + ln(x2)
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Maximum Likelihood Estimation

The Maximum Likelihood: A Method

So, solve the following equation.

d[L(x|Γ)]

dΓ
=

∑n
i=1 d[log(f(xi|Γ))]

dΓ
= 0

... which is a nicer gradient, both for you and your friend the computer.
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MLE in IRT

Finding our Function

Now we want to apply maximum likelihood to IRT.

First, define the probability mass function (PMF)

f3(yij) =

{
Pj(θi) if yij = 1
Qj(θi) if yij = 0

... which is a simple Bernoulli r.v. for a given θ and a given item.

Often, the probability of response is assumed to hide a logit link.
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MLE in IRT

The Logistic Functions

The Bernoulli r.v. maps latent abilities to observed responses.

For the 3PL model, the probability of a correct response is

Pj(θi) = cj + (1− cj)
exp[aj(θi − bj)]

1 + exp[aj(θi − bj)]

= cj + (1− cj)
1

1 + exp[−aj(θi − bj)]

And the probability of an incorrect response is

Qj(θi) = 1− Pj(θi) = 1−
[
cj + (1− cj)

exp[aj(θi − bj)]
1 + exp[aj(θi − bj)]

]
= (1− cj)− (1− cj)

[
exp[aj(θi − bj)]

1 + exp[aj(θi − bj)]

]
= (1− cj)

[
1− exp[aj(θi − bj)]

1 + exp[aj(θi − bj)]

]
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MLE in IRT

The Logistic Functions: 2

To make our lives easier, define a 2PL model.

f2(yij) =

{
P ?
j (θi) if yij = 1

Q?
j (θi) if yij = 0

The 2PL model implies

P ?
j (θi) =

exp[aj(θi − bj)]
1 + exp[aj(θi − bj)]

=
1

1 + exp[−aj(θi − bj)]

and

Q?
j (θj) = 1− exp[aj(θi − bj)]

1 + exp[aj(θi − bj)]
=

1

1 + exp[aj(θi − bj)]

=
exp[−aj(θi − bj)]

1 + exp[−aj(θi − bj)]
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MLE in IRT

The Logistic Functions 2.2 ... 3.2 ... ?

The 3PL probabilities relate to the 2PL probabilities.

Qj(θi) = (1− cj)
[
1− exp[aj(θi − bj)]

1 + exp[aj(θi − bj)]

]
= (1− cj)[1− P ?

j (θi)]

= (1− cj)[Q?
j (θi)]

It is silly to define both functions as PMFs.
We are implying that both the 3PL model and 2PL model hold at
the same time.
Our 2PL model definition is just for computational simplicity.
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MLE in IRT

A Few More Things

Next, we want to note that

f3(yij) =

{
Pj(θi) if yij = 1
Qj(θi) if yij = 0

can be written more compactly as

f3[yij |θi, φj = (aj , bj , cj)] = Pj(θi)
yijQj(θi)

(1−yij)

Remember that yij is a Bernoulli random variable, so

yij ∈ {0, 1}
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MLE in IRT

A Few More Things

A major assumption in IRT:

Conditional on the trait (θi), the observations are independent.

Note that responses are not i.i.d. unless the same item is given to the
same person (by using memory erasing capabilities).

Each item/person combination is a different Bernoulli random
variable, and assuming independence of responses and ordered items for
a given person, we have

f3(yi = (yi1, yi2, . . . , yiJ)|θi, Φ) =
J∏

j=1

Pj(θi)
yijQj(θi)

(1−yij)
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MLE in IRT

A Few More Things

Another major assumption in IRT:
A given person’s response vector yi is independent from all
other response vectors after taking the trait into consideration.

And assuming ordered items and ordered persons, we have

f3

Y =

y1
...
yn

 |θ, Φ

 =

n∏
i=1

J∏
j=1

Pj(θi)
yijQj(θi)

(1−yij)
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MLE in IRT

MLE in IRT

For now we assume that

1 we have the response matrix,
2 we know the vector of θ, and
3 we have the likelihood of observing Y given a variety of Φ.

And just as in the earlier picture
We want to find our best guess of the location of the
parameters. And using Fisherian theory, our best guess, and
the one that has the best properties, is as the maximum of the
likelihood.

(Think of weird likelihood picture in a lot of dimensions.)
(Or don’t ...)
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MLE in IRT

MLE in IRT

Therefore, maximize

f3 (Y|θ, Φ) =

n∏
i=1

J∏
j=1

Pj(θi)
yijQj(θi)

(1−yij)

which is equivalent to maximizing

L(Y|θ, Φ) = log

 n∏
i=1

J∏
j=1

Pj(θi)
yijQj(θi)

(1−yij)


=

n∑
i=1

J∑
j=1

(
yij logPj(θi) + (1− yij) logQj(θi)

)
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MLE in IRT

Results of the Derivation

See Harwell, Baker, and Zwarts (1988) for the details of the derivation.

Then letting

ωij =
P ?
j (θi)Q

?
j (θi)

Pj(θi)Qj(θi)

the derivative of the log-likelihood for a given item j is

∂L

∂aj
= (1− cj)

n∑
i=1

(
[yij − Pj(θi)] · ωij(θi − bj)

)
∂L

∂bj
= (1− cj)(−aj)

n∑
i=1

(
[yij − Pj(θi)] · ωij

)
∂L

∂cj
= (1− cj)−1

n∑
i=1

[
yij − Pj(θi)

Pj(θi)

]
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MLE in IRT

Results of the Derivation

And (for each item) we have three equations and three unknowns.

Finally, set 

∂L

∂aj

∂L

∂bj

∂L

∂cj


=

0
0
0



to search for a maximum, iterate, and solve.
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MLE to JMLE

Another Way

We can also group examinees at a finite number of ability levels.

Let

nkj be the number of examinees at level k who response to item j,
rkj be the number of examinees who correctly respond to item j at
ability level k, and
p̂kj =

rkj
nkj

be the estimated probability of response to item j at
ability level k.

And instead of a single Bernoulli response for each examinee/item, we
have a sum of Bernoulli responses for each group/item combination.
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MLE to JMLE

Another Distribution

Assume that we know pj for each group on item j.

f4(rkj) =


p1kj if rkj = 1
p2kj if rkj = 2
...

...
pnkj if rkj = nkj

How do we write f4 compactly?

f4[rkj |Xk, nkj , φj ] =

(
nkj
rkj

)
Pj(Xk)rkjQj(Xk)(nkj−rkj)
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MLE to JMLE

Another Likelihood

Assuming Xk is known for each k, rkj and nkj are observed at each
ability level, then the likelihood is as follows.

f4[r|X, n, Φ] =

q∏
k=1

J∏
j=1

(
nkj
rkj

)
Pj(Xk)rkjQj(Xk)(nkj−rkj)

And the loglikelihood is as follows.

L4[r|X, n, Φ] = m+

q∑
k=1

J∑
j=1

[
rkj logPj(Xk) + (nkj − rkj) logQj(Xk)

]

Steven W. Nydick 24/57



MLE to JMLE

Another Openin’ Another Show

And, by analogy of the previous “derivation,” for a given item j,

∂L

∂aj
= (1− cj)

q∑
k=1

(
[rkj − nkj · Pj(Xk)] · ωkj(Xk − bj)

)
∂L

∂bj
= (1− cj)(−aj)

q∑
k=1

(
[rkj − nkj · Pj(Xk)] · ωkj

)
∂L

∂cj
= (1− cj)−1

q∑
k=1

[
rkj − nkj · Pj(Xk)

Pj(Xk)

]
Again -- three equations and three unknowns.

Set equal to 0, iterate, and solve.
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MLE to JMLE

Simplified JMLE

We generally do not know θ or X. What do we do?

1 Use standardized raw test scores as initial “known ability values”, or
2 assume fixed ability points using raw-test scores to “group”

examinees.
3 Solve for item parameters individually (item-by-item).
4 Re-estimate θ/X for each person or fixed ability point to group

examinees.
5 Anchor θ/X by standardizing (i.e. converting to z-scores).
6 Re-estimate item parameters individually (item-by-item).
7 “Ping-Pong” until some convergence criterion is met.

The above procedure is called “JMLE” and implemented in LOGIST.
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MLE to JMLE

A Metaphor
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MLE to JMLE

Calibration in Pictures

Using the first set of equations
... there will be a bunch of 0s and 1s above and below the
theoretical ogive.

Using the second set of equations
... there will be an estimate probability at each of the k levels.
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MLE to JMLE

Calibration in Pictures
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MLE to JMLE
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MLE to JMLE

Calibration in Pictures
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MLE to JMLE

The End of JMLE

There is a major problem with JMLE.

We must assume that ability is known/fixed to estimate items,
and we must assume that item parmaeters are known to
estimate ability.

The first set of JMLE equations are not even consistent!

Why cannot we just ignore θ in the estimation?
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MLE to JMLE

JMLE and MMLE

A simple comparison of JMLE to MMLE:

1 JMLE is a fully-fixed effects model, in that both item parameters
and ability are fixed parameters to be estimated.

Assuming fixed-effects force us to estimate more parameters than
desired and eliminates the benefit of consistency.

2 MMLE is a mixed-effects model, with item parameters as fixed
effects and ability parameters as random effects.

Assuming random effects allows us to posit a distribution and
remove them from the estimating equations.
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MMLE in IRT

The Beginning: Bayes

Using a distribution of θ requires Bayes theorem.

f5(θ|yi, Φ, Γ) =
f3(yi|θ, Φ)g(θ|Γ)∫
f3(yi|θ, Φ)g(θ|Γ)dθ

=
f3(yi|θ, Φ)g(θ|Γ)

f6(yi|Φ)

We want to find the distribution of

f6(yi|Φ) =

∫
f3(yi|θ, Φ)g(θ|Γ)dθ

... by integrating out θ to obtain a marginal distribution of Γ.
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MMLE in IRT

The MMLE Likelihood: B & L

How do we obtain this “prior” distribution of θ?

If we have a prior distribution, then maximize

f6(Y|Φ) =

n∏
i=1

f6(yi|Φ)

which is equivalent to maximizing

L(Y|Φ) =

n∑
i=1

log f6(yi|Φ)
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MMLE in IRT

The MMLE Likelihood: B & L

Why do we want to maximize the previous equations?

Given: The response vectors for each person.

Unknown: The ability associated with those response vectors.

By eliminating the irritating thing of having to know each persons
ability, then we can estimate the item parameters directly.
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MMLE in IRT

Results of the Derivation: B & L

See Harwell et al. (1998) for the details of the derivation.

For a given item j,

∂L

∂aj
= (1− cj)

n∑
i=1

∫ (
[yij − Pj(θ)] · ωij(θ − bj)

)
f5(θ|yi, Φ, Γ)dθ

∂L

∂bj
= (1− cj)(−aj)

n∑
i=1

∫ (
[yij − Pj(θ)] · ωij

)
f5(θ|yi, Φ, Γ)dθ

∂L

∂cj
= (1− cj)−1

n∑
i=1

∫ [
yij − Pj(θ)

Pj(θ)

]
f5(θ|yi, Φ, Γ)dθ
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MMLE in IRT

Results of the Derivation: B & L

The MML derivation

1 looks similar to the MLE/JMLE derivation, but
2 the distribution of θ is integrated out of the equation.

Of course the only additional part to MMLE is the distribution of θ.
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MMLE in IRT

Quadrature

How do we find the perform the integral inside the gradient?

If a distribution is continuous and has finite moments, it can be
approximated to any desired degree of accuracy with a histogram.

Therefore, we must assume that
g(θ|Γ)

is continuous.

A usual assumption is that g(θ|Γ) is normally distributed.
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MMLE in IRT

Quadrature
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1 Xk as the rectangle
midpoint ( “node”).

2 A(Xk) as the weight
given the node.
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MMLE in IRT

Quadrature

Normal Dist With Hist Approximation

Standard Normal Distribution
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Quadrature is Riemann
calculus ... backwards.

The number of nodes is
finite (k = 1, . . . , q).
Because the number of
nodes is finite, the
distribution is usually
bounded.
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MMLE in IRT

Quadrature

Normal Dist With Hist Approximation

Standard Normal Distribution
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Quadrature is Riemann
calculus ... backwards.

1 Equally spaced intervals
→ Easier computation

2 Non-equally space
intervals → Improved
loss function for
equivalent number of
bins
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MMLE in IRT

Implementing Quadrature

g(θ|Γ) can be determined by empirical methods.

Now rewrite our equation taking into consideration quadrature.

We are approximating θ with discrete values, so if θ is in a specific
“bin”, k, we then approximate θ with Xk.
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MMLE in IRT

A Finite Bayes

Therefore,

f5(θ|yi, Φ, Γ) =
f3(yi|θ, Φ)g(θ|Γ)∫
f3(yi|θ, Φ)g(θ|Γ)dθ

becomes

f5(Xk|yi, Φ, Γ) =

∏J
j=1 Pj(Xk)yijQj(Xk)(1−yij)A(Xk)∑q

k=1

∏J
j=1 Pj(Xk)yijQj(Xk)(1−yij)A(Xk)

where

g(θ|Γ) ≈ A(Xk) f3(yi|θ, Φ) ≈ Pj(Xk)yijQj(Xk)(1−yij)

Steven W. Nydick 44/57



MMLE in IRT

Bock and Lieberman MMLE Solution

Now Xk takes on finite values, and A(Xk) are the corresponding
weights.

Adjusting the solutions for each of the parameters results in

∂L

∂aj
= (1− cj)

n∑
i=1

q∑
k=1

(
[yij − Pj(Xk)] · ωkj(Xk − bj)

)
f5(Xk|yi, Φ, Γ)

∂L

∂bj
= (1− cj)(−aj)

n∑
i=1

q∑
k=1

(
[yij − Pj(Xk)] · ωkj

)
f5(Xk|yi, Φ, Γ)

∂L

∂cj
= (1− cj)−1

n∑
i=1

q∑
k=1

[
yij − Pj(Xk)

Pj(Xk)

]
f5(Xk|yi, Φ, Γ)
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MMLE in IRT

Bock and Aitken Transition

Technically:

You can set the gradient equal to 0 and solve through
approximation or Newton-Raphson.

However:

The quadrature function is conditional on all of the parameters.

Bock and Aitken proposed an alternative solution...
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MMLE in IRT

Bock and Aitken Notation

Step One:

E[nk] : n̄k =

n∑
i=1

[f5(Xk|yi, Φ, Γ)]

=

n∑
i=1

[ ∏J
j=1 Pj(Xk)yijQj(Xk)(1−yij)A(Xk)∑q

k=1

∏J
j=1 Pj(Xk)yijQj(Xk)(1−yij)A(Xk)

]

The equation is simplier than it appears:

f5(Xk|yi, Φ, Γ) is essentially the “probability of being in any
group” given a person’s response vector.
Prob of being in a group summed over all response vectors is the
“expected number” in that group.
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MMLE in IRT

Bock and Aitken Notation

Step Two:

E[rkj ] : r̄kj =

n∑
i=1

yij [f5(Xk|yi, Φ, Γ)]

=

n∑
i=1

yij

[ ∏J
j=1 Pj(Xk)yijQj(Xk)(1−yij)A(Xk)∑q

k=1

∏J
j=1 Pj(Xk)yijQj(Xk)(1−yij)A(Xk)

]

The equation is simplier than it appears:

f5(Xk|yi, Φ, Γ) is a probability of being in a particular category
for reponse vector i.
yij is the actual response of person i
Prob of being in a category multiplied by the response summed
over all people is the expected number of correct responses at a
given Xk.
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MMLE in IRT

Bock and Aitken MMLE Solution

Adjusting the Bock and Lieberman solution:

∂L

∂aj
= (1− cj)

q∑
k=1

(
[r̄kj − n̄kPj(Xk)] · ωkj(Xk − bj)

)
∂L

∂bj
= (1− cj)(−aj)

q∑
k=1

(
[r̄kj − n̄kPj(Xk)] · ωkj

)
∂L

∂cj
= (1− cj)−1

q∑
k=1

[
r̄kj − n̄kPj(Xk)

Pj(Xk)

]

What do the above equations mean? We have “expected number of
correct responses” and “probability of a correct response times the
expected number of people who have that probability.”
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MMLE in IRT

Solving our Equations

To solve the equations we

1 need provisional item parameter estimates,
2 use weights and quadrature points to compute posterior

probability (f5(Xk)) for each examinee,
3 find n̄k and r̄kj using the posterior probability in part two and
4 set the derivatives to 0 and solve.

Steven W. Nydick 50/57



MMLE in IRT

A Problem!!!

Even though Bock and Aiken simplified the equations, we still need the
item parameters to estimate everything else.

Therefore, we must
iteratively go through steps 1 – 4 using Newton-Raphson steps
and update the item parameter after each step until
convergence.

But ... there is another way.
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The EM Algorithm

An Alternative Formulation

The EM algorithm is useful for complex maximum likelihood problems.

EM turns the maximization problem (with unobserved random
variables) into a missing data problem.

How does the EM algorithm applies to IRT?

θ is unobserved and unobservable.
(Y, θ) is the unobserved (complete) data.
Y is the observed (incomplete) data.
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The EM Algorithm

The Steps

After an initial estimate of item parameters, EM uses two steps:

1 The E Step: compute E[log f(Y, θ|Φ)|Y,Φp]

2 The M Step: choose Φp to maximize the expectation.

Essentially

1 The “E” Step: finds log-likelihood values (expected log-likelihood
values).

2 The “M” step treats the “E” step output as a genuine log-likelihood.
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The EM Algorithm

EM in IRT

The log-likelihood of “observing” the n and r vectors is

q∑
k=1

J∑
j=1

[
rkj logPj(Xk) + (nkj − rkj) logQj(Xk) +

q∑
k=1

nkj log(αk)

]

Taking expectations with respect to Y and Φ results in
q∑

k=1

J∑
j=1

[
E(rkj |Y, Φ) logPj(Xk) + E[(nkj − rkj)|Y, Φ] logQj(Xk)

+

q∑
k=1

E(nkj |Y, Φ) log(αk)

]

And we now have a “posterior likelihood” based on the Xk distribution.
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EM in IRT: The Properties

The following are properties of the EM algorithm.

1 (n, r) is a sufficient statistic for (Y, X).
2 Maximizing the previous log-likelihood is equivalent to maximizing

the E step.
3 The previous log-likelihood has no cross-second derivatives, so the

maximization is done item-by-item.
4 Because the two/three parameter logistic IRT models are not

exponential family members, the algorithm is not guaranteed to
converge.
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EM in IRT: The Benefits

The following are benefits of the EM algorithm.

1 Item parameters are consistent for finite length tests (unlike
JMLE).

2 The metric of the item parameters is defined by the distribution of
examinees.

3 EM imparts a Bayesian-like structure on estimation.
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