Euler's Formula and Trig Identities

Steven W. Nydick

May 25, 2012

Introduction

Many of the identities from trigonometry can be demonstrated relatively easily using Euler's formula, rules of exponents, basic complex analysis, multiplication rules, and *one* elementary rule from trigonometry. There are two things to consider during the remaining derivation. First, Euler's formula says

$$\exp[ix] = \cos(x) + i\sin(x) \tag{1}$$

Equation (1) is due to the consequences of rotating a line in the complex plane. See Wikipedia for a more thorough explanation. Second, the real and imaginary part of a complex number remain the same before and after factoring. No manipulation can turn the imaginary part of a complex number into a real part.

Pythagorean Identities

Before using Euler's formula to demonstrate complex trigonometric identities, one might not remember the most basic trigonometric identity of them all: $\cos^2(x) + \sin^2(x) = 1$. Due to the Pythagorian theorem

$$h^2 = o^2 + a^2. (2)$$

And from the definitions of sine $(\sin(x) = \frac{o}{h})$, where *o* is the length of the horizontal or vertical line opposite of the angle, *x*, and *h* is the hypotenuse formed from a right triangle) and cosine $(\cos(x) = \frac{a}{h})$, where *a* is the length of the horizontal or vertical line adjacent to the angle, *x*), we have that

$$\sin^{2}(x) + \cos^{2}(x) = \left(\frac{o}{h}\right)^{2} + \left(\frac{a}{h}\right)^{2}$$
$$= \frac{o^{2} + a^{2}}{h^{2}}$$
$$= \frac{o^{2} + a^{2}}{o^{2} + a^{2}}$$
$$= 1$$
(3)

Even/Odd Identities

Using Equation (3), we can figure out some relatively basic identities. For instance, $\cos(-x) = \cos(x)$ and $\sin(-x) = -\sin(x)$ are both solved in one step.

$$\cos(-x) + i\sin(-x) = \exp[-ix] = (\exp[ix])^{-1}$$

$$= \frac{1}{\exp(ix)}$$

$$= \frac{1}{\exp(ix)}$$
(by 1)

$$\cos(x) + i\sin(x) = \frac{1}{\cos(x) - i\sin(x)}$$
(5)

$$= \frac{1}{\cos(x) + i\sin(x)} \left(\frac{\cos(x) - i\sin(x)}{\cos(x) - i\sin(x)} \right)$$
(5)
$$\cos(x) - i\sin(x)$$
(5)

$$= \frac{1}{\cos^2(x) + \sin^2(x)}$$
(using $i^2 = -1$)
$$= \frac{\cos(x) - i\sin(x)}{1}$$
(by 3)
$$= \cos(x) + i[-\sin(x)]$$

And because the real/imaginary part of $\cos(-x) + i\sin(-x)$ is equal to the real/imaginary part of $\cos(x) + i[-\sin(x)]$, we end up with

$$\cos(-x) = \cos(x) \qquad \qquad \sin(-x) = -\sin(x) \tag{6}$$

Many trig identities use Equation (6) in their derivation.

Sum/Difference Formulas

A straightforward derivation involves sums or differences inside sines and cosines. The deriviation proceeds by noting the relationship among angles and Euler's formula

$$\cos(x \pm y) + i\sin(x \pm y) = \exp[i(x \pm y)].$$

Using properties of exponents

$$\exp[i(x \pm y)] = \exp[ix] \exp[i(\pm y)]$$

= $[\cos(x) + i\sin(x)][\cos(\pm y) + i\sin(\pm y)]$
= $[\cos(x) + i\sin(x)][\cos(y) \pm i\sin(y)]$ (by 6)
= $\cos(x)\cos(y) \mp \sin(x)\sin(y) + i[\sin(x)\cos(y) \pm \cos(x)\sin(y)]$

And because the real/imaginary part of $\cos(x \pm y) + i \sin(x \pm y)$ is equal to the real/imaginary part of $\cos(x)\cos(y) \mp \sin(x)\sin(y) + i[\sin(x)\cos(y) \pm \cos(x)\sin(y)]$, we end up with

$$\cos(x \pm y) = \cos(x)\cos(y) \mp \sin(x)\sin(y) \qquad \sin(x \pm y) = \sin(x)\cos(y) \pm \cos(x)\sin(y) \tag{7}$$

Double Angle Formulas

$\cos(2x)$ and $\sin(2x)$

Another useful identity entails doubling an angle inside of a sine or consine operator. Even though this identity might not seem important, a consequence of the double angle formula is very useful. This derivation is similar to the previous one and starts by considering that

$$\cos(2x) + i\sin(2x) = \exp[i(2x)].$$

And the derivation follows a similar path to the previous one.

$$\exp[i(2x)] = \exp[i(x + x)] = \exp[ix] \exp[ix]$$

= $(\exp[ix])^2$
= $[\cos(x) + i\sin(x)]^2$
= $\cos^2(x) + 2i\cos(x)\sin(x) - \sin^2(x)$
= $\cos^2(x) - \sin^2(x) + i[2\cos(x)\sin(x)]$

And because the real/imaginary part of $\cos(2x) + i\sin(2x)$ is equal to the real/imaginary part of $\cos^2(x) - \sin^2(x) + i[2\cos(x)\sin(x)]$, we end up with

$$\cos(2x) = \cos^2(x) - \sin^2(x) \qquad \qquad \sin(2x) = 2\cos(x)\sin(x) \tag{8}$$

 $\cos^2(x)$ and $\sin^2(x)$

Immediate consequences of Equations (3) and (8) include indentities for squares of sines and cosines. For instance, we know that

$$\cos(2x) + 1 = \cos^2(x) - \sin^2(x) + 1 \tag{by 8}$$

$$= \cos^{2}(x) - \sin^{2}(x) + [\sin^{2}(x) + \cos^{2}(x)]$$
(by 3)
= 2 cos²(x)

and that

$$\cos(2x) - 1 = \cos^2(x) - \sin^2(x) - 1$$
 (by 8)

$$= \cos^{2}(x) - \sin^{2}(x) - [\sin^{2}(x) + \cos^{2}(x)]$$
 (by 3)

 $= -2\sin^2(x) \tag{9}$

so that we immediately end up with

$$\cos^2(x) = \frac{1 + \cos(2x)}{2} \qquad \qquad \sin^2(x) = \frac{1 - \cos(2x)}{2} \tag{10}$$

Sum to Product Formulas

$\cos(x) - \cos(y)$ and $\sin(x) - \sin(y)$

We can also examine identities involving the differences outside of sines and cosines. For instance, we can put $\cos(x) - \cos(y)$ and $\sin(x) - \sin(y)$ into one step by noting that

 $\cos(x) - \cos(y) + i[\sin(x) - \sin(y)] = \cos(x) + i\sin(x) - [\cos(y) + i\sin(y)] = \exp(ix) - \exp(iy).$

And therefore

$$\exp(ix) - \exp(iy) = \exp\left(ix + i\frac{y}{2} - i\frac{y}{2}\right) - \exp\left(iy + i\frac{x}{2} - i\frac{x}{2}\right) = \exp\left(i\frac{x+y}{2} + i\frac{x-y}{2}\right) - \exp\left(i\frac{x+y}{2} + i\frac{y-x}{2}\right) = \exp\left(i\frac{x+y}{2}\right) \exp\left(i\frac{x-y}{2}\right) - \exp\left(i\frac{x+y}{2}\right) \exp\left(i\frac{y-x}{2}\right) = \exp\left(i\frac{x+y}{2}\right) \left[\exp\left(i\frac{x-y}{2}\right) - \exp\left(i\frac{y-x}{2}\right)\right] = \left[\cos\left(\frac{x+y}{2}\right) + i\sin\left(\frac{x+y}{2}\right)\right] \left[\cos\left(\frac{x-y}{2}\right) + i\sin\left(\frac{x-y}{2}\right) - \cos\left(\frac{y-x}{2}\right) - i\sin\left(\frac{y-x}{2}\right)\right]$$

Using Equation (6), we have

$$= \left[\cos\left(\frac{x+y}{2}\right) + i\sin\left(\frac{x+y}{2}\right)\right] \left[\cos\left(\frac{x-y}{2}\right) + i\sin\left(\frac{x-y}{2}\right) - \cos\left(\frac{y-x}{2}\right) - i\sin\left(\frac{y-x}{2}\right)\right]$$
$$= \left[\cos\left(\frac{x+y}{2}\right) + i\sin\left(\frac{x+y}{2}\right)\right] \left[\cos\left(\frac{x-y}{2}\right) + i\sin\left(\frac{x-y}{2}\right) - \cos\left(\frac{x-y}{2}\right) + i\sin\left(\frac{x-y}{2}\right)\right]$$
$$= \left[\cos\left(\frac{x-y}{2}\right) + i\sin\left(\frac{x-y}{2}\right)\right] \left[i\left(2\sin\left(\frac{x-y}{2}\right)\right)\right]$$
$$= -2\sin\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right) + i\left[2\sin\left(\frac{x-y}{2}\right)\cos\left(\frac{x+y}{2}\right)\right]$$

And because the real/imaginary part of $\cos(x) - \cos(y) + i[\sin(x) - \sin(y)]$ is equal to the real/imaginary part of $-2\sin\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right) + i\left[2\sin\left(\frac{x-y}{2}\right)\cos\left(\frac{x+y}{2}\right)\right]$, we end up with

$$\cos(x) - \cos(y) = -2\sin\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right) \qquad \sin(x) - \sin(y) = 2\sin\left(\frac{x-y}{2}\right)\cos\left(\frac{x+y}{2}\right) \tag{11}$$

 $\cos(x) + \cos(y)$ and $\sin(x) + \sin(y)$

A similar derivation indicates involving the sums of sines and cosines. As before, note that

$$\cos(x) + \cos(y) + i[\sin(x) + \sin(y)] = \cos(x) + i\sin(x) + [\cos(y) + i\sin(y)] = \exp(ix) + \exp(iy)$$

And because the negative versus positive does not affect any of the steps inside the exponent, we end up with

$$\begin{split} \exp(ix) - \exp(iy) &= \exp\left(i\frac{x+y}{2}\right) \left[\exp\left(i\frac{x-y}{2}\right) + \exp\left(i\frac{y-x}{2}\right)\right] \\ &= \left[\cos\left(\frac{x+y}{2}\right) + i\sin\left(\frac{x+y}{2}\right)\right] \left[\cos\left(\frac{x-y}{2}\right) + i\sin\left(\frac{x-y}{2}\right) + \cos\left(\frac{y-x}{2}\right) + i\sin\left(\frac{y-x}{2}\right)\right] \\ &= \left[\cos\left(\frac{x+y}{2}\right) + i\sin\left(\frac{x+y}{2}\right)\right] \left[\cos\left(\frac{x-y}{2}\right) + i\sin\left(\frac{x-y}{2}\right) + \cos\left(\frac{x-y}{2}\right) - i\sin\left(\frac{x-y}{2}\right)\right] \\ &= \left[\cos\left(\frac{x+y}{2}\right) + i\sin\left(\frac{x+y}{2}\right)\right] \left[2\cos\left(\frac{x-y}{2}\right)\right] \\ &= 2\cos\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right) + i\left[2\sin\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right)\right] \end{split}$$

And because the real/imaginary part of $\cos(x) + \cos(y) + i[\sin(x) + \sin(y)]$ is equal to the real/imaginary part of $2\cos\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right) + i\left[2\sin\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right)\right]$, we end up with

$$\cos(x) + \cos(y) = 2\cos\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right) \qquad \sin(x) + \sin(y) = 2\sin\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right) \tag{12}$$

Extensions of the sum-to-product formulas result in product-to-sum formulas. However, because those formulas are not easily derived using Euler's formula, I leave them as exercises.