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Abstract

Computerized mastery testing (CMT) is a subset of computerized adaptive testing

(CAT) with the intent of assigning examinees to one of two, mutually exclusive, cat-

egories. Most mastery testing algorithms have been designed to classify examinees on

either side of a cut-point in one dimension, but many psychological attributes are inher-

ently multidimensional. Little psychometric work has generalized these unidimensional

algorithms to multidimensional traits. When classifying examinees in multidimensional

space, practitioners must choose a cut-point function that separates a mastery region

from a non-mastery region. The possible cut-point functions include one in which a lin-

ear combination of ability across dimensions must exceed a threshold and one in which

each ability must exceed a threshold irrespective of any other ability. Moreover, two

major components of every classification test are choosing successive questions and de-

termining when a classification decision should be made. One frequently used stopping

rule in unidimensional mastery testing is the Sequential Probability Ratio Test (SPRT),

in which a classification is made either when the log-likelihood test statistic is sufficiently

large or when the maximum number of items has been reached. Due to inefficiencies in

the SPRT, alternative algorithms have been proposed, such as the Generalized Likeli-

hood Ratio (GLR), and the SPRT with Stochastic Curtailment (SCSPRT). The current

study explores properties of unidimensional classification testing algorithms, generalizes

unidimensional methods to multidimensional mastery tests, and then tests many of the

multidimensional procedures. Most of the multidimensional algorithms yield relatively

efficient and accurate multidimensional classifications. However, some multidimensional

classification problems, such as classifying examinees with respect to a linear classifi-

cation bound function, are more robust to poor choices in the item bank or adaptive
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testing algorithms. Based on results from the main study in this thesis, a follow-up

study is proposed to better combine sequential classification methods with those based

on directly quantifying incorrect classifications. I conclude by discussing consequences

of the results for practitioners in realistic mastery testing situations.
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Chapter 1

Introduction

Forty-five states have already adopted the Common Core State Standards (CCSS;

2010) to implement the dictates demanded by No Child Left Behind (NCLB; 2008). As

explained on their website, the standards promise to adequately: (1) prepare students

for college and work; (2) train students to compete in the global marketplace; and (3)

determine student proficiency based on evidence of success (CCSS; 2010). Two state-

led groups have been awarded federal funds to design assessments measuring objectives

outlined in the CCSS. Due to the quantity of examinees, the high cost of exam develop-

ment and implementation, and the consequence of mismeasurement, these assessments

should quickly and accurately measure student readiness and achievement. Addressing

the concerns of test developers, adaptive testing procedures base item selection and test

length on the needs of an assessment and the responses of examinees to already admin-

istered items. Due to purported accuracy and efficiency, one of the state-led groups, the

Smarter Balanced Assessment Consortium (SBAC; 2013), will soon adopt computerized

adaptive tests (CAT; e.g., Wainer, 2000; Weiss, 1982) in high stakes exams (e.g., Way,

Twing, Camara, Sweeney, Lazar, & Mazzeo, 2010).

Many tests, such as those constructed by the SBAC, seek to track individual changes

1
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in ability. Another broad set of tests classifies examinees into categories based on

the estimated location of ability relative to pre-specified cut-points. The most basic

of the latter task-type determines classification by comparing ability to the minimal

ability required for demonstrating competence in a particular field (e.g., Kingsbury &

Weiss, 1983; Welch & Frick, 1993). For example, medical professionals are expected to

know and conform to the dictates of their discipline lest they provide inadequate care

and endanger patients’ lives. These threshold-ability tests are generally referred to as

“mastery” or “certification” tests (Bejar, 1983). Computerized mastery testing (CMT)

is a subset of CAT with the intent of assigning examinees to one of two, mutually

exclusive categories: one representing mastery and the other indicating non-mastery.

Unlike CATs designed for equiprecise measurement (e.g., Weiss, 1982), the procedures

implemented in CMT aim only increase the accuracy of certification.

Psychometric models designed for classification are divided into two, general areas:

latent class models and latent trait models. Latent class models, such as diagnostic

classification models (DCM; Rupp & Templin, 2008), assume that reality consists of

a constellation of discrete cognitive states. One determines classification in DCM by

estimating the posterior probability of each examinee having the attributes required for

mastery given responses to test items. Latent trait models, such as item response theory

(IRT; e.g., Embretson & Reise, 2000), assume that each examinee can be represented as

a point in RK , where K is the number of dimensions underlying a series of test items.

One determines classification in IRT by comparing the location of each examinee’s ability

vector in multidimensional space to some boundary curve separating the categories.

Both IRT and DCM can be used as the psychometric model underlying adaptive

tests. All adaptive tests must include algorithms to determine which questions should

be administered to each examinee and when enough information has been collected to

end each test. During equiprecise CAT, questions are generally selected to provide as
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much information as possible at the current ability estimate, and tests are generally

stopped once that ability estimate has sufficiently stabilized. Conversely, during mas-

tery tests, questions are generally selected to provide information about whether the

examinee is on either side of the cut-point, and tests are generally stopped once that

mastery decision has stabilized. These procedures will often result in drastically dif-

ferent tests. For example, imagine Einstein taking an introductory Physics equiprecise

CAT. Because scarcely any questions are very difficult, the test would require many

questions to differentiate his ability from other Physics professors. However, if the test

were designed as a mastery test, only a few questions would be needed before a clear

designation of “mastery” could be made.

Most researchers designing CMT algorithms using IRT models have assumed that

only one trait underlies responses to test items (although see Glas & Vos, 2010; Seitz

& Frey, 2013; and Spray, Abdel-fatah, Huang & Lau, 1997). Item selection algorithms

for unidimensional, IRT-based mastery tests include selecting items by maximizing: (1)

Fisher information at the classification bound (e.g., Eggen, 1999; Lin & Spray, 2000;

Spray & Reckase, 1994); (2) Kullback-Leibler divergence at the classification bound

(e.g., Eggen, 1999); and (3) the weighted log-odds ratio at the classification bound

(e.g., Lin, 2011; Lin & Spray, 2000). Stopping rules for unidimensional, IRT-based

mastery tests fall into two general categories: (1) Bayesian decision rules (e.g., Lewis &

Shehan, 1990; Rudner, 2009); and (2) sequential decision theory (e.g., Bartroff, Finkel-

man, & Lai, 2008; Eggen, 1999; Finkelman, 2010; Thompson, 2009). The Bayesian

decision approach to mastery testing determines, after each step, the posterior expected

loss given prior information, classification proportions, and a set of responses. A test

is then terminated if the expected loss for making a specific classification/decision is

sufficiently small. In contrast, sequential decision theory algorithms are generally based

off of Wald’s (1945; 1947) Sequential Probability Ratio Test (SPRT), which uses a
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likelihood ratio test statistic to determine when enough independent and identically

distributed (i.i.d.) data have been collected to choose between one of two simple hy-

potheses. For unidimensional IRT-based CMT algorithms, these simple hypotheses are

usually chosen to be specific ability values slightly within each category (e.g., Reck-

ase, 1983). Then, after administering an item to an examinee, the SPRT must decide

whether that examinee should be classified in the lower category, the examinee should be

classified in the upper category, or the examinee should be administered another item.

Primary justification for using the SPRT in mastery tests is attributed to the Wald-

Wolfowitz theorem: given two simple hypotheses, “of all tests with the same power

the sequential probability ratio test requires on the average fewest observations” (Wald

& Wolfowitz, 1948). Because conditions underlying SPRT optimality do not generally

apply to CMTs (see Nydick, 2012, for criticisms of the SPRT as applied to CMTs),

researchers have proposed extensions of/alternatives to the simple SPRT, including the

Generalized Likelihood Ratio Test (GLR; Bartroff, Finkelman, & Lai, 2008; Thompson,

2009), the SPRT with Stochastic Curtailment (SCSPRT; Finkelman, 2008a), and the

SPRT with Predictive Power (Finkelman, 2010). The latter two methods, based off

of probabilistic stopping rules taken from the clinical trials literature (Lan, Simon, &

Halperin, 1982), determine whether to terminate an exam based, in part, on information

from the remaining items in the bank.

Certification tests often aim to assess a composite of dimensions, but those tests gen-

erally provide a total score assumed to capture relevant information about that compos-

ite. For example, radiographers must know physics (how to use equipment), medicine

(how to find the the appropriate anatomical area in a picture), patient care (how to

make patients feel comfortable), etc. All of these dimensions are probably correlated

to some degree, yet they are distinct enough to result in separate types of questions.

Unfortunately, the criterion used to make a decision about the examinee’s certification
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is generally based on the total test score (Interpreting, 2003, p. 23). To classify an

examinee along two dimensions using unidimensional IRT, one must make two separate

decisions or, worse, pretend that those dimensions are perfectly correlated (although see

Seitz & Frey and Spray et al., 1997, for alternative conceptions of “unidimensional al-

gorithms” as applied to a multidimensional classification task). Multidimensional item

response theory models are more flexible in accounting for relationships between these

underlying dimensions unless those dimensions are highly correlated (Ackerman, 1989).

The purpose of this thesis is to extend the theory of unidimensional IRT-based

computerized mastery testing to multidimensional IRT models and then to compare

the proposed algorithms in a large simulation study. The remainder of this thesis is

organized as follows. In Chapter 2, I explain the unidimensional three-parameter IRT

model and review the most commonly used item selection algorithms and stopping rules

in computerized mastery testing. In Chapter 3, I show how the optimal method of se-

lecting items for unidimensional CMT depends on the IRT model used and the location

of true ability relative to the classification bound. In Chapter 4, I describe the most

commonly used multidimensional IRT models and extend unidimensional conceptualiza-

tions of mastery (including the item selection algorithms and stopping rules) to multiple

dimensions. In Chapter 5, I outline a simulation study designed to compare many of the

proposed multidimensional CTM algorithms in realistic testing situations. In Chapter

6, I summarize results from the simulation, and in Chapter 7, I draw conclusions from

the simulation and propose future directions.



Chapter 2

Unidimensional Algorithms

In this chapter, I briefly outline the unidimensional, binary IRT model and explain

currently used item selection algorithms and stopping rules for unidimensional adaptive

mastery testing.

2.1 Unidimensional IRT and Mastery Testing

Item response theory (IRT) is a mathematical model that describes the relation-

ship between responses to test items and examinee ability. The most popular IRT

model remains the unidimensional, binary, three-parameter logistic model (3PL; Birn-

baum, 1968) or simplifications thereof. Specifically, let θ represent the continuous latent

variable underlying examinee responses to test items, assume that responses are con-

ditionally independent1 given a fixed θ = θi (where i indexes examinees), and allow

responses to have two possible scores, 0 and 1. Then, according to the 3PL, the proba-

bility of examinee i correctly responding to item j (i.e., getting a score of 1 on the item)

is defined by the following item response function (IRF):

1For adaptive tests, “conditionally independent” is a more appropriate assumption than “locally
independent” due to item selection dependencies (e.g., Mislevy & Chang, 2000).

6



7

pj(θi) = Pr(Yij = 1|θi, aj , bj , cj) = cj +
1− cj

1 + exp[−Daj(θi − bj)]
, (2.1)

where bj denotes the inflection point of the IRF, aj is proportional to the slope of the

IRF at its inflection point, cj indicates the lower asymptote, and D is a scaling constant

usually specified to be either 1 (for the logistic metric) or 1.7022 (for the normal-ogive

metric), although alternative numbers for D have been proposed3. Because D is a

scaling constant that does not affect model fit, I will let D = 1 for clarity. Common

restrictions of the 3PL for binary items include: (1) eliminating the lower-asymptote

parameter across all items, which results in a two-parameter model (2PL) specified by

the following IRF:

pj(θi) = Pr(Yij = 1|θi, aj , bj) =
1

1 + exp[−aj(θi − bj)]
; (2.2)

and (2) restricting the slope parameters across items to be identical, which results in a

one-parameter (1PL) model, and can be written with the following IRF:

pj(θi) = Pr(Yij = 1|θi, bj) =
1

1 + exp[−a(θi − bj)]
. (2.3)

Unidimensional models assume that a single ability underlies responses to all items

on a test or in an item bank. Therefore, unidimensional mastery can be defined as a

range of values on this latent dimension separated by a cut-score, θ0. For examinee i,

the correct mastery decision depends on the location of θi relative to θ0. If θi > θ0,

the examinee should be classified as a master and any other decision is a Type II error.

Conversely, if θi < θ0, then the examinee should be classified as a failure and any other

2D = 1.702 minimizes the maximum difference between the normal and logistic cumulative distribu-
tion functions (Camilli, 1994).

3D = 1.749 minimizes the KL-divergence between the normal and logistic densities assuming the
normal distribution is true (Savelli, 2006).
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decision is a Type I error (Finkelman, 2008a). Unidimensional item selection algorithms

and stopping rules were derived to result in the shortest tests conditional on pre-specified

Type I and Type II error rates. In the next two sections, I briefly outline each of the

commonly used item stopping rules and item selection algorithms in unidimensional

CMT. Because efficient CMT item selection algorithms depend on the stopping rule, I

first describe commonly used stopping rules and then explain how those classification

criteria inform item selection decisions.

2.2 Unidimensional Stopping Rules

Many of the stopping rules in computerized mastery testing are modifications of

Wald’s Sequential Probability Ratio Test (SPRT; Wald, 1947). Therefore, I briefly

outline the SPRT as applied to CMT and then review CMT-based modifications of the

SPRT designed to circumvent its shortcomings.

2.2.1 The Sequential Probability Ratio Test

The classic stopping rule in CMT, the SPRT algorithm (e.g., Eggen, 1999; Reckase,

1983; Spray & Reckase, 1996), simplifies the classification task. Assume that a test

administrator must classify examinees into one of two categories separated by a cut-

point. Let θ0 denote this a priori selected ability value separating true failures from

true masters. Then point hypotheses can be specified as

H0 : θi = θ0 − δ

H1 : θi = θ0 + δ

where δ is a small constant putting H0 slightly inside of the failure region and H1 slightly
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inside of the mastery region.

The purpose of any stopping rule in CMT is to determine whether an examinee

should be classified as a master, a non-master, or be administered another item. To

make one of these three decisions, the SPRT compares the likelihood ratio test statistic

to appropriate critical values. As an example of how the likelihood ratio statistic might

be applied, let responses be conditionally independent and follow the unidimensional,

binary, item response function defined in Equation (2.1). Then the log-likelihood for a

single examinee given a particular response pattern, yi, J = [yi1, yi2, . . . , yiJ ]T , is

log[L(θ|yi, J)] =

J∑
j=1

[
yij log[pj(θ)] + (1− yij) log[1− pj(θ)]

]
(2.4)

with pj(θ) defined in Equation (2.1). If H0 : θl = θ0 − δ and H1 : θu = θ0 + δ, then the

log-likelihood ratio of examinee i manifesting θu relative to θl is

Ci, j = log
[
LR(θu, θl|yi, j)

]
= log

[
L(θu|yi, j)
L(θl|yi, j)

]
= log

[
L(θu|yi, j)

]
− log

[
L(θl|yi, j)

]
.

(2.5)

When Equation (2.5) is a large, positive number, then there is sizable evidence that θu

generated the particular response pattern, yi, j . Conversely, when Equation (2.5) is a

large, negative number, there is considerable evidence supporting θl.

Justification for using a likelihood ratio test statistic when testing simple hypothe-

ses is due to the Neyman-Pearson lemma (Casella & Berger, 2001, p. 366). Accord-

ing to the Neyman-Pearson lemma, for a fixed sample size, N , and conditional on

a particular Type I error rate, α, the uniformly most powerful (UMP) test rejects

H0 only contingent on the size of the likelihood ratio test statistic. Likelihood ratio-

based test statistics are also optimal in the case of optional stopping, as proved in the



10

Wald-Wolfowitz theorem (Wald & Wolfowitz, 1948). Specifically, let Y1, Y2, . . . be a

(possibly infinite) independent and identically distributed (i.i.d.) sample from com-

mon density f with unknown parameter vector θ (dim(θ) ≥ 1). Then assuming a

pair of simple hypotheses, H0 : θ = θ1 versus H1 : θ = θ2, and pre-specified crit-

ical values, A and B, where 0 < A < B < ∞, a rule that stops sampling when

N = inf
{
n ≥ 1 :

∏n
i=1

[
f(yi|θ1)
f(yi|θ2)

]
≤ A or

∏n
i=1

[
f(yi|θ1)
f(yi|θ2)

]
≥ B

}
is optimal (i.e., min-

imizes the expected sample size under both H0 and H1) in the set of all tests with the

same Type I and Type II error rates (Lai, 1997). Using the log-likelihood test statistic

(rather than the likelihood) and given specific α (Type I error rate) and β (Type II

error rate) levels, Wald (1947) recommended choosing Cl = log[A] = log
[

β
1−α

]
as the

critical value separating non-mastery from uncertainty and Cu = log[B] = log
[

1−β
α

]
as

the critical value separating mastery from uncertainty.

Modeled on sequential decision theory, psychometricians have designed a simple

template for ending unidimensional mastery tests. After each item between the min-

imum number of items, jmin, and the maximum number of items, jmax, calculate

Ci, j = log
[
LR(θu, θl|yi, j)

]
as defined in Equation (2.5). If Ci, j < Cl, classify the

examinee as a failure and terminate the test. If Ci, j > Cu, classify the examinee as a

master and terminate the test. But if Cl ≤ Ci, j ≤ Cu, administer another item. Once

j = jmax, use a final critical value of (Cl+Cu)/2 (Finkelman, 2008a) to make a decision.

Often, researchers set α = β, so that (Cl+Cu)/2 = 0, but practitioners sometimes desire

to avoid one type of error depending on the ultimate costs of misclassification.

Unfortunately, researchers have identified several limitations of the standard SPRT

in adaptive mastery testing. First, although Wald and Wolfowitz (1948) proved opti-

mality of the SPRT when testing simple hypotheses, the SPRT is inefficient relative to

other procedures if θi 6= θl and θi 6= θu (Finkelman, 2008a). In light of this concern,

the Generalized Likelihood Ratio (GLR; Bartroff, Finkelman, & Lai, 2008; Thompson,
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2009, 2010) was proposed as a simple modification of the SPRT that tests composite

hypotheses. Second, the SPRT controls the error rate for infinitely long experiments

under certain conditions, but every CAT must be terminated after a maximum number

of items. Finkelman (2003, 2008a) proposed several procedures that use the likelihood

ratio test statistic to estimate the probability of examinee i switching categories by

jmax. In the next several sub-sections, I explore each of the common adjustments to the

SPRT algorithm.

2.2.2 The Generalized Likelihood Ratio

The Generalized Likelihood Ratio (GLR) is a modification of the simple SPRT

algorithm for testing composite hypotheses. To derive the GLR procedure, consider a

general version of the simple hypotheses specified above,

H0 : θi ≤ θl = θ0 − δ

H1 : θi ≥ θu = θ0 + δ,

where θ ∈ R has an associated likelihood function f(y|θ). Then using a generalized

likelihood ratio test statistic with L(θ1|y) = arg maxθ>θ0{f(y|θ)} in the numerator and

L(θ2|y) = arg maxθ≤θ0{f(y|θ)} in the denominator often results in a uniformly most

powerful (UMP) test (Casella & Berger, 1990, p. 368). Intuitively, the generalized like-

lihood approach compares θ̂MLE = arg maxθ∈R L(θ|y) (where MLE stands for Maximum

Likelihood Estimate) to the most likely value of the composite hypothesis to which θ̂MLE

does not belong.

Adopting generalized likelihood ratio statistics in sequential analyses, Lai (2001)

wrote that “simulation studies and asymptotic analyses have shown that [the number



12

of items needed to make a decision using a GLR] is nearly optimal over a broad range

of parameter values θ, performing almost as well as [a procedure] that assumes θ to

be known” (p. 307). Due to its desirable characteristics, Bartroff, Finkelman, and Lai

(2008) proposed adopting

Gi, j = log
[
GLR(θ0|yi, j)

]
= log

[
L(θ̂|yi, j)

]
− log

[
L(θ′|yi, j)

]
(2.6)

as an alternative to the simple likelihood ratio in CMT, where θ′ = θ0 + δ if θ̂ ≤ θ0 or

θ′ = θjmax
− if θ̂ > θ0, and θjmax

− is found via Monte Carlo simulation to yield appropriate

α and β rates. The same procedure is used in GLR as in SPRT with slightly different

hypotheses, test statistics, and critical values (which are also found via simulation).

Contrary to Bartroff et al. (2008), who proposed complicated methods for determining

the test statistic and critical values, Thompson (2009, 2010) suggested that the GLR be

identical to “the fixed point SPRT, with the exception that θ1 and θ2 [in the generalized

likelihood ratio test statistic] are allowed to vary” (Thompson, 2010, p. 5). Therefore,

Thompson advised calculating

log
[
GLR(θu, θl|yi, j)

]
= sup

θ1≥θu

(
log
[
L(θ1|yi, j)

])
− sup
θ2≤θl

(
log
[
L(θ2|yi, j)

])
, (2.7)

and comparing the result to Cl and Cu as in the SPRT. Note that Equation (2.7)

contrasts the MLE with the maximum of the likelihood in the hypothesis to which the

MLE does not belong. Regardless of method, both GLR and SPRT compare some

version of a likelihood ratio test statistic to critical values that are only based on the

items already taken. Finkelman (2003, 2008a) proposed a supplementary stopping rule,

based on the work of Lan, Simon, and Halpern (1982) from the clinical trials literature,

that also considers the remaining set of items before making a decision. I next address
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the various curtailed decision rules.

2.2.3 The SPRT with Stochastic Curtailment

A curtailed version of a sequential procedure (Eisenberg & Ghosh, 1980) makes

decision Di, j = r for examinee i, with j < jmax, if and only if for every s 6= r, decision

Di, jmax = s can not happen. In other words, the curtailment criterion results in a

decision if and only if all other decisions are impossible by the maximum sample size.

Because a curtailment criterion is usually difficult to obtain, researchers have modified

curtailed stopping rules to make decision Di, j = r for examinee i, with j < jmax, if and

only if for every s 6= r, the probability of deciding Di, jmax = s is below some probability

threshold (Finkelman, 2008a, p. 453). As applied to mastery testing, the SPRT with

Stochastic Curtailment (SCSPRT; Finkelman, 2003) classifies an examinee when the

probability of the examinee being classified in the other category by jmax is small.

To derive the stochastically curtailed SPRT, let Di, jtmp be the temporary decision

after jtmp < jmax items, and assume that an SPRT-based mastery decision has not

been made by jtmp items. Set Djtmp = n (where n stands for “non-master”) if Ci, jtmp <

(Cl+Cu)/2, and set Di, jtmp = dm (where m stands for “master”) if Ci, jtmp > (Cl+Cu)/2.

Next, pick two error rates, 0 ≤ ε1 ≤ .5 and 0 ≤ ε2 ≤ .5. Finally, classify the examinee

as a non-master if {Ci, jtmp < Cl} or {Djtmp = n and Pr(Di, jmax = n|Ci, jtmp) ≥ 1− ε1};

alternatively, classify the examinee as a master if {Ci, jtmp > Cu} or {Djtmp = m and

Pr(Di, jmax = m|Ci, jtmp) ≥ 1 − ε2}. Notice how Finkelman (2008a) defined four error

rates. α and β are the specified Type I and Type II error rates for an examinee at a

particular end of the indifference region given an infinitely long experiment. Conversely,

ε1 and ε2 are the specified Type I and Type II error rates for an examinee classified in a

particular category at the hypothetical end of the test. Unlike α and β, ε1 and ε2 refer

to a decision made by the end of the test and not the true classification.
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To determine the SCSPRT decision rule, one must derive the probability of switching

categories by maximum test length. Finkelman (2008a) used a normal approximation

to the log-likelihood function after jmax items conditional on jtmp < jmax items already

administered. Specifically, define C0 = (Cl + Cu)/2. Then after jtmp < jmax items,

Prθ̃(Di, jmax = n|Ci, jtmp) = 1−Prθ̃(Di, jmax = m|Ci, jtmp) ≈ Φ

(
C0 − Eθ̃(Ci, jmax |Ci, jtmp)√

Varθ̃(Ci, jmax |Ci, jtmp)

)
(2.8)

where

Eθ̃(Ci, jmax |Ci, jtmp) = Ci, jtmp +

jmax∑
j=jtmp+1

Eθ̃

(
log

[
L(θu|Yij)
L(θl|Yij)

])
, (2.9)

Varθ̃(Ci, jmax |Ci, jtmp) =

jmax∑
j=jtmp+1

Varθ̃

(
log

[
L(θu|Yij)
L(θl|Yij)

])
, (2.10)

θ̃ is the assumed ability under which the expectation/variance are evaluated, and Φ(·) is

the CDF of a standard normal distribution. One can straightforwardly calculate these

probabilities as long as the remaining jtmp + 1 to jmax are known in advance (or can

be guessed) and if jtmp + 1 << jmax for the Central Limit Theorem to apply (e.g.,

Finkelman, 2008a, p. 450). Non-nested likelihood ratio test statistics generally use an

asymptotic normal distribution rather than a χ2 distribution (Vuong, 1989).

Finkelman (2008a) proved that under mild sequential conditions, the SCSPRT re-

placing a generalized version4 of the SPRT is weakly admissible5. Intuitively, Finkelman

4A generalized version of the SPRT is identical to the fixed-point SPRT with (potentially) step-
dependent critical values. See Eisenberg, Gosh, and Simons (1976; as cited in Finkelman, 2008).

5A decision method is weakly admissible if no alternative method exists with at most as large error
rates (with one of those error rates strictly smaller) and an almost-surely smaller number of sequential
steps. See Eisenberg and Simons (1978; as cited in Finkelman, 2008).
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(2008a) explained that weak admissibility of the SCSPRT results from stochastic cur-

tailment “[eliminating] the use of all ‘wasted’ items, that is, all items that cannot affect

the classification decision” (p. 455). Unfortunately, the Expectation and Variance in

the Equations (4.15)–(4.16) are taken with respect to a particular θ: the closest end-

point of the indifference region, the current ability estimate, or (as Finkelman, 2008a,

2010, recommended) the endpoint of a confidence interval closest to the classification

bound. Finkelman (2010) proposed a less ad hoc approach by weighting the conditional

probability estimate on the distribution of θi after jtmp items.

2.2.4 The SPRT with Predictive Power

Finkelman (2010) proposed several modifications of the stocastically curtailed SPRT

stopping rule for computerized adaptive mastery tests. One option (termed “MLE

formation”) takes the expectation and variance of the likelihood ratio test statistic with

respect to θ̃ = θ̂MLE rather than θ̃ = θl or θ̃ = θu once estimates of θ̂MLE stabilize.

A second option (termed “confidence interval formation”) is identical to the “MLE

formation” but uses a confidence interval endpoint in the likelihood ratio test statistic

rather than the MLE itself. The final recommendation of Finkelman (2010) (termed

“predictive power”) weights the SCSPRT by the posterior distribution of θi after jtmp

items. Specifically, let π(θ) be the prior distribution of θ. Then the posterior distribution

of θi after jtmp items can be written

π(θ|yi, jtmp
) =

π(θ)L(θ|yi, jtmp
)∫

Θ π(θ)L(θ|yi, jtmp
)dθ

, (2.11)

where Θ is the set of all θ, yi, jtmp
is the response pattern of examinee i after jtmp items,

L(θ|yi, jtmp
) is the likelihood function given response pattern yi, jtmp

, and, by definition,

the integral of a function f(θ),
∫

Θ f(θ)dθ, is taken over all θ ∈ Θ. Then the PPSPRT



16

can be defined as

PrΘ(Di, jmax = n|Ci, jtmp) =

∫
Θ
π(θ|yi, jtmp

)Prθ(Di, jmax = n|Ci, jtmp)dθ, (2.12)

where PrΘ(Di, jmax = n|Ci, jtmp) is the expected SCSPRT criterion over Θ. If defining

the loss in making a classification decision as

Loss = 100× IW + J, (2.13)

where IW is an indicator function for incorrect classification and J is the number of

items given to an examinee, then the PPSPRT and θ̃ = θ̂MLE methods resulted in

the lowest average loss across all conditions (Finkelman, 2010). Therefore, using a

PPSPRT stopping rule for mastery tests appears to result in a reasonable tradeoff

between average test length and classification accuracy. Although SPRT-based stopping

rules are increasingly used in CMT research, an alternative branch of CMT stopping

rules are based on Bayesian decision theory.

2.2.5 Bayesian Decision Rules

An alternative set of stopping rules in CMT is based on Bayesian decision theory

(e.g., Lewis & Shehan, 1990; Vos, 1999, 2002). Rather than adopting the likelihood ratio

test statistic, Bayesian decision rules combine information from the posterior distribu-

tion of θi with specified costs in making decisions and administering items. Specifically,

let Θm represent the set of masters, such that Θn = Θc
m symbolizes the set of non-

masters. Assuming that θ is a continuous random variable, then
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π(m|yi, jtmp
) = 1− π(n|yi, jtmp

) =

∫
Θm

π(θ|yi, jtmp
)dθ (2.14)

is the posterior probability of mastery given the first jtmp items. Given the posterior

probability of mastery, one can then make a decision after determining: (1) states of

nature, (2) possible actions, (3) loss functions, and (4) decision rules/principles. As

an example of Bayesian decision theory, Lewis and Sheehan (1990) proposed a simple

procedure. Define a mastery test with boundary point, θ0, and possible states of nature,

Θ = {Θn, Θm}. Then, after item j is administered to examinee i, one can either fail

the examinee (θ̂i ∈ Θn, where θ̂i is the MLE of θi), pass the examinee (θ̂i ∈ Θm), or

administer another item. Each decision incurs a pre-specified cost. Let η1 be the cost of

passing an examinee who should not pass the test, η2 be the cost of failing an examinee

who should pass the test, and κ be the cost of administering an additional item. Using

Equation (2.14), the expected loss of passing the examinee after item j can be written

as

Eθ[L(θ,m)|yi, j ] = jκ+ η1 ·
(
1− π(m|yi, j)

)
, (2.15)

and the expected loss of failing the examinee after item j can be written as

Eθ[L(θ, n)|yi, j ] = jκ+ η2 · π(m|yi, j). (2.16)

The expected loss of administering another item depends on its usefulness for ultimately

making a decision, and as such, relies on the expected future loss of eventually failing

or passing the examinee. Lewis and Sheehan (1990) defined the risk at stage j as the

expected loss incurred by making the best decision at that stage. Assuming that the

decision after jmax items must be a classification, then the risk at the final stage can be
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written

Rjmax(θ|yi, jmax
) = min

[
jmaxκ+η1 ·(1−π

(
m|yi, jmax

)
)
, jmaxκ+η2 ·π(m|yi, jmax

)

]
. (2.17)

Equation (2.17) can then be iteratively used to find the expected loss for administering

another item at any jtmp before jmax. Specifically, the expected loss for continuing to

test at stage jtmp can be expressed as a function of the risk at stage jtmp+1,

Eθ[L(θ, c)|yi, jtmp
] = pjtmp+1(θ) ·Rjtmp+1(θ|[yi, jtmp

, 1]) +
(
1− pjtmp+1(θ)

)
·Rjtmp+1(θ|[yi, jtmp

, 0]),

(2.18)

where pjtmp+1(θ) is the probability of correctly responding to item jtmp + 1, as defined

in Equation (2.1), so the risk at stage jtmp < jmax becomes

Rjtmp(θ|yi, jtmp
) = min

[
Eθ[L(θ,m)|yi, jtmp

], Eθ[L(θ, n)|yi, jtmp
], Eθ[L(θ, c)|yi, jtmp

]

]
.

(2.19)

Therefore, the potential risk at stage jtmp depends on the possible risk at stages jtmp +

1, . . . , jmax. Equation (2.19) terminates in Equation (2.17) because the final stage must

result in a pass/fail decision. After each item, the algorithm would choose the path (pass,

fail, continue) that minimizes the corresponding expected loss. Note that pjtmp+1(θ) and

π
(
m|yi, jtmp+1) must also be iteratively defined based on the distribution of responses

given the jth
tmp posterior distribution of θ. Lewis and Shehan (1990) found that using

a Bayesian decision procedure in lieu of administering a fixed number of items reduced

CMTs by approximately 50% with little loss in classification accuracy.

Another common loss function is to penalize the decision based on the true distance
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away from the classification bound (e.g., Vos, 1999), and another common decision rule

is to minimize the maximum (rather than expected) loss (e.g., Vos, 2002). Regardless of

loss function or decision rule, many stopping rules depend on a hypothetical complete

test. For unidimensional mastery testing, several possible algorithms are available to

choose those future items.

2.3 Unidimensional Item Selection Algorithms

All adaptive testing algorithms require methods of selecting future items. The cur-

rent section details common item selection algorithms in adaptive tests and then explains

modifications of those algorithms for use in mastery testing.

2.3.1 Fisher Information Methods

Many item selection algorithms require determining the information gained by, and

thus the benefit of, choosing one potential future item over another potential future item.

Fisher information (FI; Lord, 1980) measures the curvature of the log-likelihood in a

small area surrounding the maximum likelihood estimate and relates to the asymptotic

variance of θ̂ given true θ (e.g., Frank, 2009). Fisher information for item j can be

written as a function of true θ,

Ij(θ) = −E
[
∂2 log[L(θ|y)]

∂θ2

]
=

[p′j(θ)]
2

pj(θ)[1− pj(θ)]

=
a2j (1− cj)(

cj + exp[aj(θ − bj)]
)(
cj + exp[−aj(θ − bj)]

)2 (2.20)

where pj(θ) is defined in Equation (2.1) and
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p′j(θ) =
dpj(θ)

dθ
=

(1− cj)aj exp[aj(θ − bj)]
(1 + exp[aj(θ − bj)])2

(2.21)

is the derivative of pj(θ) with respect to θ. The most common Fisher information-

based item selection algorithm administers items that maximize (2.20) at θ = θ̂i. Basic

criticisms of the original method include: (1) the likelihood function occassionally does

not have a finite maximum (Veerkamp & Berger, 1997), and (2) the MLE estimate is

often highly variable toward the beginning of a CAT (Chang & Ying, 1996). Other crit-

icisms pertain to classification testing. For instance, if any cj > 0, then selecting items

based on maximizing Fisher information at θ̂i is not optimal in determining whether

θi ∈ Θm (e.g., Chapter 3; Spray & Reckase, 1994; Wiberg, 2003).

A variant of the typical Fisher information-based item selection algorithm is to take

a weighted average of the information function across Θ (e.g., Veerkamp & Berger,

1997),

Ij(θ|wij) =

∫
Θ
wijIj(θ)dθ, (2.22)

where wij is the weight function for examinee i used for item j. Some common weight

functions include wij = 1 iff θ = θ̂i, wij = L(θ|yi, j−1), or wij = π(θ|yi, j−1) (as defined

in Equation 2.11). Using wij = 1 iff θ = θ̂i is equivalent to standard Fisher infor-

mation, and the latter two weight functions account for uncertainty in the maximum

likelihood estimate. Veerkamp and Berger (1997) found that selecting items by max-

imizing likelihood-weighted Fisher information results in slightly shorter average test

lengths than selecting items by maximizing Fisher information at θ̂MLE. Another com-

mon algorithm described by Veerkamp and Berger (1997) is to maximize the average

Fisher information across an interval. Let θ̂Li be the lower limit of the interval and θ̂Ri

be the upper limit of the interval. Then wij = 1 if θ ∈ [θ̂Li , θ̂
R
i ] would result in choosing
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an item that maximizes the average information across that interval. Averaging infor-

mation across an interval considers many potential ability estimates and, thus, results

in a more robust algorithm (as shown on p. 213 of Veerkamp & Berger for extreme

values of θ). One could also circumvent the limited knowledge of locally-defined θ̂MLE

by deriving a more globally-defined objective function.

2.3.2 Kullback-Leibler Methods

Chang and Ying (1996) suggested basing item selection on Kullback-Leibler (KL)

divergence rather than FI as the information metric. KL divergence (e.g., Kullback,

1959; Kullback & Leibler, 1951) relates to the expected loss when choosing an approx-

imate model rather than the correct model. Let f be the true probability distribution

of univariate random variable X, and let g be an alternative/approximate distribution

of X. Then the KL divergence between f and g is defined to be

KL(f ||g) = Ef
(

log

[
f(X)

g(X)

])
=

∫ ∞
−∞

f(x) log

[
f(x)

g(x)

]
dx, (2.23)

where || stands for “distance” between distributions, KL(f ||g) ≥ 0, and the expectation

is taken with respect to the true distribution, f . To derive a KL-based index for com-

puterized adaptive tests, let θi be the true ability of examinee i. Then KL divergence

for the jth item can be defined

KLj(θi||θ) = Eθi log

[
L(θi|Yij)
L(θ|Yij)

]
= pj(θi) log

[
pj(θi)

pj(θ)

]
+ [1− pj(θi)] log

[
1− pj(θi)
1− pj(θ)

]
.

(2.24)

As shown by Chang and Ying (1996), the curvature of the KL divergence function at a

point is equal to Fisher information at that point. Therefore, KL divergence effectively



22

reduces to Fisher information if choosing θ to be close to θi. Chang and Ying (1996)

recommended using KL divergence because “there is no requirement that θi be close to

θ” (p. 218), unlike the more local character of Fisher information. Moreover, by using a

likelihood ratio statistic, KL divergence is similar to the decision-making process of the

SPRT. Several different KL divergence indices have been proposed for use in adaptive

testing. Originally, the KL information index was defined as average KL divergence

along a small interval,

KLj(θ̂i) =

∫ θ̂i+δij

θ̂i−δij
KL( ˆthetai||θ)dθ, (2.25)

where θ̂i is the MLE of θi before administering item j, and δij is a function of the

precision in the MLE. Chen, Ankenmann, and Chang (2000) also noted that, as in

Fisher information, weight functions can be applied to KL divergence indices, resulting

in

KLj(θ̂i|wij) =

∫ θ̂i+δij

θ̂i−δij
wijKL(θ̂i||θ)dθ. (2.26)

They further compared bias, MSE, and item overlap for various FI and KL criteria across

CATs designed to estimate θi for each person. Only for extreme ability levels did KL

information or weighted Fisher information improve over standard Fisher information

in terms of bias, MSE, and item overlap early in a test. Moreover, as they wrote,

“differences among all [item selection algorithms] with respect to BIAS, RMSE, SE,

and item overlap were negligible for tests of more than 10 items” (p. 253, and see Cheng

and Lio, 2000, for a partial replication of this study with nearly identical results).

All of the item selection algorithms heretofore discussed were derived to pinpoint an

examinee’s true ability. None of the algorithms as presented can be used to efficiently

decide whether an examinee is in one of two broadly defined categories. In Chapter 3, I
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show why each of the aforementioned algorithms results in inefficient CMTs. However,

before explaining reasons for inefficiencies, I first describe alternatives to the typical

item selection algorithms appropriate for unidimensional adaptive mastery tests.

2.3.3 Mastery Testing Methods

Many researchers have suggested modifications of the above algorithms for use in

mastery testing. For instance, Eggen (1999) promoted selecting items by maximiz-

ing Fisher information at θ0 rather than θ̂i or maximizing point-wise KL divergence

(Equation 2.24) at KLj(θu||θl). He found that maximizing Fisher information at the

cut-point resulted in the shortest and most accurate tests, but selecting items to maxi-

mize Fisher information at θ̂i or KL divergence using KLj(θu||θl) did not result in much

performance decrement (although see Eggen, 2010 for a replication of Eggen, 1999 with

slightly different results).

A common complaint in using point-wise KL divergence in mastery testing is the

lack of symmetry between KLj(θu||θl) and KLj(θl||θu). Recall that KL divergence is

defined as the expected log-likelihood ratio comparing the true model to an alternative

model with respect to the true model. Therefore, when choosing items by maximizing

KLj(θu||θl), one implicitly assumes that every examinee is a master. Alternative mastery

testing item selection algorithms have been developed that better consider the actual

location of an examinee when selecting items. These alternative algorithms include

the weighted log-odds ratio (LO; Lin & Spray, 2000) and mutual information (MI;

Weissman, 2007). The weighted log-odds ratio selects items that maximize the expected

log-odds at the ends of the indifference region,
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LOj(θu||θl) =
∑
y

E log

([
pj(θu)

pj(θl)

]Y
÷
[

1− pj(θu)

1− pj(θl)

]1−Y
)

(2.27)

= E(Y = 1) log

[
pj(θu)

pj(θl)

]
− [1− E(Y = 1)] log

[
1− pj(θu)

1− pj(θl)

]
, (2.28)

where E(Y = 1) is the classical difficulty of an item and can be calculated by integrating

the probability of response for θ weighted on the density of θ across the examinee

distribution6.

Mutual information generalizes log-likelihood-based information criteria across mul-

tiple cut-points. Weissman (2007) proposed MI as a symmetric version of KL diver-

gence. Let ΘB be a discrete set describing the classification bound(s). In our case,

ΘB = {θl, θu}. Then mutual information can be defined as

MIj(ΘB) =
∑
y

∑
θ∈ΘB

f(y, θ) log

[
f(y, θ)

f(y)f(θ)

]

=
∑
y

∑
θ∈ΘB

Prj(Y = y|θ)π(θ) log

[
Prj(Y = y|θ)

f(y)

]
, (2.29)

where Prj(Y = y|θ) is the probability of Y = y given a particular θ, π(θ) is the prior

probability of θ, and f(y) is the marginal probability of Y = y. Lin (2011) tested

FI, KL, LO, and MI in several SPRT-based CMTs. He found that the weighted log-

odds ratio resulted in the fewest number of items administered, and mutual information

resulted in the most number of items administered. All of the algorithms had similar

classification accuracies. In Chapter 4, I discuss generalizations of the item selection

6Lin and Spray, 2000 and Lin, 2011 take the expectation in Equation (2.27) with respect to the
marginal distribution of θ to arrive at Equation (2.28). However, I found taking the expectation with
respect to a single examinee’s θ̂i to better reflect the associated SPRT stopping rule. The latter item
selection rule will be expounded upon in later chapters.
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and stopping rules to multidimensional adaptive tests. But first, I explain limitations

of using certain item selection rules in adaptive mastery tests as a partial justification

for deriving particular multidimensional mastery testing item selection algorithms.



Chapter 3

SPRT and Binary Response

Models

A potential limitation of using the SPRT as a decision rule in unidimensional clas-

sification tests is due to the non-zero lower asymptote of the three-parameter logistic

model. Spray and Reckase (1994) noticed that when using the 3PL, “selecting items to

have maximum information at the examinee’s true ability results in longer average test

lengths” (p. 9) than selecting items to have maximum information at the cut-points, and

“this result is quite dramatic for the lower [classification bound] and examinees above

θ of .5” (p. 9). In other words, the SPRT is inefficient for high ability simulees when

using the three-parameter logistic model and selecting items based on the maximum

likelihood estimate. Spray and Reckase (1994) proposed a simple method of reducing

the number of administered items in SPRT-based classification tests: select items to

maximize information at the cut-point separating categories. However, the ideal item

selection point depends on the true item and person parameters as well as the classi-

fication bound. Selecting items to maximize information at the classification bound is

26
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only a coarse approximation of the most efficient item selection algorithm. By exam-

ining properties of IRT log-likelihood ratios, one can shed light on optimal methods of

designing item banks, choosing item selection algorithms, and selecting classification

criteria for adaptive tests. Because multidimensional IRT models are generalizations of

the unidimensional functional form, many of these results should also apply to multi-

dimensional adaptive tests. In the following sections, I present the effect of item and

person parameters on the magnitude of the SPRT test statistic in two parts: first with

mathematical evidence, and then, supporting mathematical conclusions with a small

set of simulations.

3.1 Mathematical Considerations

In this section, I demonstrate how the SPRT-based test statistic changes as prop-

erties of the logistic model are altered. Thompson (2010), who used the 3PL in his

simulations, wrote that “it is far easier to make a classification if the cut-score is in the

extremes” and that “typically, only a few items might be needed to classify an examinee

above a cut-score of −2.0 or below +2.0” (p. 9). Thompson’s assertion is accurate when

using the GLR as a stopping rule (which was the purpose of his paper) but not always

when adopting the SPRT. Because his discussion includes research on both stopping

rules, his statement of classification efficiency is not entirely correct. Only Spray and

Reckase (1994) explicitly acknowledged that “the large difference in number of items

for the high ability examinees [when selecting items at proximate estimates of θ rather

than at the cut-point] is a result of the nonzero lower asymptote for the three parame-

ter logistic model” (p. 7). I now briefly show why non-zero lower asymptotes affect the

magnitude of a likelihood ratio test statistic in certain situations. The first part of this

section focuses on properties of the classification bound. I then reverse the investigation
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by examining optimal items given test attributes.

3.1.1 The SPRT Test Statistic and Classification Bounds

Consider a classification task involving one cut-point and a symmetric indifference

region of size 2δ. Conceiving the likelihood ratio test statistic as a function of the

classification bound, θ0, Equation (2.5) for examinee i after a fixed set of J items can

be written

log
[
LR(θ0 + δ, θ0 − δ|yi)

]
= log

[
L(θ0 + δ|yi)
L(θ0 − δ|yi)

]
=

J∑
j=1

yij log

[
pj(θ0 + δ)

pj(θ0 − δ)

]
+

J∑
j=1

(1− yij) log

[
1− pj(θ0 + δ)

1− pj(θ0 − δ)

]
. (3.1)

Spray and Reckase (1994) noticed that when cj > 0 then limθ0→−∞
pj(θ0+δ)
pj(θ0−δ) = 1

and limθ0→−∞
1−pj(θ0+δ)
1−pj(θ0−δ) = 1. Therefore, when all of the pseudo-guessing parameters

are greater than 0 and the classification bound is extremely negative (e.g., 4 or more

standard deviations below the average θi), Equation (3.1) will be close to 0 regardless of

an examinee’s true ability. Note that the above situation is not realistic in practice, as

it assumes the cut-point approaches negative infinity with a fixed set of item difficulties.

Most practicable tests use cut-points well within the range of the item parameters. But if

items are not strategically selected on a CAT, the limiting problems of the log-likelihood

ratio can be approximated even with a well-designed item bank.

One can better understand the behavior of the log-likelihood ratio by studying its

change in slope. Taking the first derivative of Equation (3.1) with respect to θ0 results

in

d log
[
LR(θ0 + δ, θ0 − δ|yi)

]
dθ0

=

J∑
j=1

ajyij [p
cj
j (θ0 +δ)−pcjj (θ0−δ)]−

J∑
j=1

aj [p
1
j (θ0 +δ)−p1j (θ0−δ)], (3.2)
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where p
cj
j (θ0) =

exp[aj(θ0−bj)]
cj+exp[aj(θ0−bj)] and p1

j (θ0) =
exp[aj(θ0−bj)]

1+exp[aj(θ0−bj)] . If cj = 0 for all j ∈

{1, . . . , J}, then p
cj
j (θ0 + δ)− pcjj (θ0 − δ) = 1− 1 = 0 for all items, so that

d log
[
LR(θ0 + δ, θ0 − δ|yi)

]
dθ0

= −
J∑
j=1

aj [p
1
j (θ0 + δ)− p1

j (θ0 − δ)], (3.3)

which does not depend on item responses. Importantly, the sign of Equation (3.3) is

always negative for the 1PL and 2PL (unless δ = 0), so that the log-likelihood ratio test

statistic is monotonically decreasing as the location of the classification bound increases.

The consequence of a monotonic log-likelihood ratio statistic can be explained with a

simple example. Assume that an examinee has true θi = 2.0 and is taking a classification

test with two classification bounds: θ0a = 0 and θ0b = 1.0. Note that θi is much further

from the θ0a = 0 cut-point than the θ0,b = 1.0 cut-point. If cj = 0 for all items on

the exam, then the log-likelihood ratio test statistic will be larger comparing θ0a + δ to

θ0a − δ than comparing θ0b + δ to θ0b − δ, providing more evidence that examinee i is

above θ0a = 0 than θ0b = 1.0.

Unfortunately, if any cj > 0, then the log-likelihood ratio is not necessarily mono-

tonic. To see the consequences of non-monotonicity for classification evidence, take

expectations of Equation (3.2) conditional on θi and compare the outcome to zero,

which results in

J∑
j=1

aj [p
1
j (θ0 + δ)− p1j (θ0 − δ)] R

J∑
j=1

ajpj(θi)[p
cj
j (θ0 + δ)− pcjj (θ0 − δ)],

R
J∑
j=1

aj

[(
pj(θi)

pj(θ0 + δ)

)
p1j (θ0 + δ)−

(
pj(θi)

pj(θ0 − δ)

)
p1j (θ0 − δ)

]
,

J∑
j=1

ajp
1
j (θ0 + δ)

[
1− pj(θi)

pj(θ0 + δ)

]
R

J∑
j=1

ajp
1
j (θ0 − δ)

[
1− pj(θi)

pj(θ0 − δ)

]
, (3.4)

where R indicates the left side of Equation (3.4) will be greater than, equal to, or less
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than the right side. Assume that a test contains one item with a = 1, b = 0, c = .2,

a single examinee takes the test with true θi = 2.0, and the SPRT stopping rule is

used for classification with δ = .1. Then each half of Equation (3.4) is displayed on the

left side of Figure 3.1, and the full expected derivative is displayed on the right side of

Figure 3.1 for various values of θ0. When θ0 < −0.94, then p1(θ0 + δ)
[
1− p(θi)

p(θ0+δ)

]
<

p1(θ0 − δ)
[
1− p(θi)

p(θ0−δ)

]
, but at approximately θ0 = −0.94, the curves cross, and then

p1(θ0 + δ)
[
1− p(θi)

p(θ0+δ)

]
> p1(θ0 − δ)

[
1− p(θi)

p(θ0−δ)

]
. For these set of parameters, the

strongest evidence for θi > θ0 is when θ0 ≈ −0.94 and not when θ0 < −2.0. In fact,

when θ0 = −4.0, the expected log-likelihood ratio is approximately .013, whereas when

θ0 = −0.94, the expected log-likelihood ratio is approximately .076, providing additional

evidence that θi is in the upper category.

To better understand the consequences of item parameter values on classification

evidence, one can analytically solve for the maximum of the log-likelihood function.

Pretend that an examinee has correctly responded to a single item test from an item

bank calibrated under the 3PL. To find the corresponding classification bound resulting

in the strongest evidence for classification, construct the log-likelihood ratio assuming

a correct response and given a specified indifference region,

f1(θ0) = log

[
p(θ0 + δ)

p(θ0 − δ)

]
= log[p(θ0 + δ)]− log[p(θ0 − δ)], (3.5)

with p(θ) defined in Equation (2.1) and a, b, and c dependent on the particular item

chosen, set the derivative of Equation (3.5) equal to 0, and solve for θ0. As shown in

Appendix A.1, one finds that Equation (3.5) is maximized when

θ̂0 =
log(c)

2a
+ b. (3.6)

Because log(c) < 0 for c ∈ (0, 1), the optimal classification bound for a correct item is
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somewhat below the item difficulty and does not depend on the size of the indifference

region. Necessarily, as c → 0, then the right side of Equation (3.6) approaches −∞,

but as c→ 1 or a→∞, then the classification bound that maximizes the log-likelihood

ratio approaches θ0 = b. Therefore, when c > 0, larger item discriminations do not

mitigate the effect of a lower asymptote on the optimal classification bound.

Of course, one does not know a priori that an examinee will respond to an item

in a particular way. One can instead find the classification bound that optimizes the

expected log-likelihood ratio for a single item,

f2(θ0) = Eθi
[

log
[
LR(θ0 + δ, θ0 − δ|Y )

]]
= p(θi) log

[
p(θ0 + δ)

p(θ0 − δ)

]
+ [1− p(θi)] log

[
1− p(θ0 + δ)

1− p(θ0 − δ)

]
. (3.7)

with all of the terms identical to those in Equation (3.5). As shown in Appendix A.2,

the maximum of Equation (3.7) is found to be

θ̂0 =
log(c)

2a
+θi−

log

([
exp[a(θi − b)]{c+ 1 + exp[a(θi − b)]}+

(
c1/2 cosh[aδ]

)2]1/2
+
(
c1/2 cosh[aδ]

))
a

.

(3.8)

One immediately deduces several consequences of Equation (3.8). First, the clas-

sification bound that maximizes the expected log-likelihood ratio for a single item is

monotonically increasing with respect to θi, a, b, c, and δ (assuming that a, c, δ > 0).

Second, holding a, b, c, and δ constant, the maximal classification bound for large θi,

θ̂0 ≈
log(c)

2a
+ θi −

log

([
exp[2a(θi − b)]

]1/2
)

a

=
log(c)

2a
+ θi −

a(θi − b)
a

=
log(c)

2a
+ b, (3.9)
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is identical to the maximal classification bound assuming a correct response. Finally,

as long as c > 0, Equation (3.7) has a finite maximum that is slightly below b.

3.1.2 The SPRT Test Statistic and Item Difficulties

Thus far, I have shown the effect of θ0 on the expected SPRT test statistic given

fixed person and item parameters. Practitioners generally fix θ0 and determine the

optimal item to administer based on statistical considerations. Instead of examining

the expected log-likelihood ratio as a function of the classification bound, θ0, one could

instead let Equation (3.7) be a function of the item difficulty,

f2(b) = pj(θi) log

[
pj(θ0 + δ)

pj(θ0 − δ)

]
+ [1− pj(θi)] log

[
1− pj(θ0 + δ)

1− pj(θ0 − δ)

]
, (3.10)

and then optimize Equation (3.10) with respect to b. If c > 0, then the maximum of

Equation (3.10) is not analytically feasible. Setting c = 0, the optimal b-parameter is

shown in Appendix A.3 to be

b̂ = log

[
−γ +

√
γ2 − 4ωψ

2ω

]
/a, (3.11)

where

− γ = 4(aδ cosh[aδ]− sinh[aδ]) exp[a(θ0 + θi)], (3.12)

2ω = 4 sinh[aδ] exp[aθ0]− 4aδ exp[aθi], (3.13)

and
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γ2 − 4ωψ = 16(aδ)2
{

(cosh2[aδ]− 1) exp[2a(θ0 + θi)]
}

− 16(aδ)
{

sinh(2aδ) exp[2a(θ0 + θi)]− sinh[aδ]
(

exp[a(3θ0 + θi)] + exp[a(θ0 + 3θi)]
)}
. (3.14)

Equations (3.11) – (3.14) do not appear to reduce to manageable form. However, if

δ → 0, then

lim
δ→0+

b̂ =
θ0 + θ

2
, (3.15)

as shown in the last few lines of Appendix A.3. Therefore, items yielding optimal,

expected log-likelihood ratios (for small δ and c = 0) have difficulty parameters, b,

midway between true ability, θi, and the classification bound, θ0. Figure 3.2 shows the

effect of varying the c and δ on the optimal difficulty parameter. The left panels of Figure

3.2 display the optimal difficulty parameter as a function of c ∈ (0, 1) (with δ fixed to

.01), whereas the right panels indicate the optimal difficulty parameter as a function of

δ ∈ (0, 1) (with c fixed to 0). The upper panels of Figure 3.2 fix θi = −1.0 < θ0 = 0,

and the lower panels fix θi = 1.0 > θ0. Therefore, the optimal item difficulty parameter

minimizes the log-likelihood ratio for the upper two panels of Figure 3.2 and maximizes

the log-likelihood ratio for the lower two panels.

First, consider the right panels of Figure 3.2. If c = 0, then the b-parameter that

optimizes the expected log-likelihood ratio (either minimizing if θi < θ0 or maximizing

if θi > θ0) is close to θ0+θi
2 , as presented in Equation (3.15). For δ ≈ 1, then the optimal

b-parameter tiptoes closer to θ0 but never travels much beyond the midpoint of θi and

θ0. Unfortunately, altering c affects the location of optimal b to a much greater extent

than altering δ. To see the effect of c on the optimal b-parameter, examine the left

panels of Figure 3.2. If θi < θ0, then the b-parameter that minimizes Equation (3.10)
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Figure 3.2: Difficulty parameters that optimize the SPRT log-likelihood ratio. The left
panels show the optimal item difficulty parameter as a function of c ∈ (0, 1), and the
right panels show the optimal difficulty parameter as a function of δ ∈ (0, 1). The upper
panels indicate the difficulty parameter that minimizes the expected log-likelihood ratio
with respect to b for θi = −1.0 < θ0 = 0 and a = 1, whereas the lower panels indicate
the difficulty parameter that maximizes the expected log-likelihood ratio with respect
to b for θi = 1.0 > θ0 = 0 and a = 1.
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approaches a value close to θi as c → 1. But if θi > θ0, then the b-parameter that

maximizes Equation (3.10) equals (approximately) b̂ = θ0 for c = .3 and approaches a

value much lower than θ0 as c→ 1. Therefore, if an examinee is below the classification

bound and c > 0, then the optimal item selection algorithm would select items closer to

θi than θ0, but if an examinee is above the classification bound and c > 0, then items

should be administered with difficulty parameters close to (or even less than) θ0.

Notice that the optimal item difficulty parameter depends on the lower asymptote

(c), the size of the indifference region (δ), and the location of ability (θi) relative to the

classification bound (θ0). As shown in Figure 3.2, selecting items at the classification

bound only approximates the ideal item selection algorithm. Under the conditions

described in Figure 3.2, only for the high ability simulee with c ≈ .3 is θ0 the optimal

item selection point. Rather than selecting items at a single point for all examinees, one

could instead optimize the expected SPRT log-likelihood ratio given proximate ability

estimates. Thus, in contrast to prevailing wisdom, sophisticatedly incorporating the

current ability estimate into an item selection algorithm should reduce average test

length relative to selecting items solely based on the classification bound.

3.1.3 The Expected SPRT Algorithm

When determining the optimal item given a fixed classification bound (or, alterna-

tively, the optimal classification bound given a fixed item), I implicitly assumed that

this item should optimize the expected SPRT criterion conditional on true ability. One

could expand on these investigations by proposing an algorithm based on the expected

SPRT criterion.

The expected SPRT-based item selection algorithm given a particular cut-point, θ0,

could be implemented as follows. Let θ̂i be any estimate of θi after j− 1 items. For the

remainder of this chapter, assume that θ̂i is found by maximum likelihood estimation.
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Then an estimate of the expected SPRT-based log-likelihood ratio for the jth item is

ELRj(θ̂i) = Eθ̂i

[
log
[
LR(θ0 + δ, θ0 − δ|Yij)

]]
= pj(θ̂i) log

[
pj(θ0 + δ)

pj(θ0 − δ)

]
+ [1− pj(θ̂i)] log

[
1− pj(θ0 + δ)

1− pj(θ0 − δ)

]
, (3.16)

where ELRj(θ̂i) stands for “the expected likelihood ratio for prospective item j given

θ̂i”, and pj(θ̂i) is calculated using Equation (2.1) with θ̂i inserted in place of θi. Finally,

if θ̂i ≥ θ0, then item j should be chosen to maximize Equation (3.16), whereas if θ̂i < θ0,

then item j should be chosen to minimize Equation (3.16).

3.2 Simulation Considerations

The previous section demonstrated that the optimal difficulty parameter for a single

item depends on the existence and size of the lower-asymptote in IRT models. If c > 0,

then high ability examinees should be administered items with difficulty parameters

close to θ0, but low ability examinees should be administered items with difficulty pa-

rameters closer to θi than θ0. In this section, I construct simulation studies to determine

the effect of item selection, the location of the classification bound, and the magnitude

of c on classification evidence for a test comprised of multiple items.

3.2.1 Simulation 1

Imagine several alternate tests with comparable item response functions but different

values of c. Assume that a1, b1, and c1 are known. Then to generate comparable a2

and b2 parameters with fixed c2, one can minimize the squared difference between the

item response functions. That is, let
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{a2, b2} = arg min
a≥0, b∈R

{∫ ∞
−∞

(
Pr(Y = 1|θ, a1, b1, c1)− Pr(Y = 1|θ, a, b, c2)

)2
φ(θ)dθ

}
,

(3.17)

where φ represents the standard normal density. Then {a1, b1, c1} are “similar” in item

response function to {a2, b2, c2}. Given this method of item construction, I generated

a 1,000 item bank with a1j ∼ LogN(µlog = .53, σlog = .25), b1j ∼ Unif(−4.0, 4.0), and

c1j = .25. I then found comparable sets of {a2j , b2j} with c2j = .125 and {a3j , b3j} with

c3j = 0. Finally, classification CATs were simulated using these three item banks to

classify 10,000 simulees such that θi ∼ N(0, 1), δ = .1, α = β = .05, jmin = 4, and

jmax = 200. Across the classification CATs, θ0 was varied between −3.0 and 3.0 in 1.5

increments, and item selection was varied between maximum Fisher information at θ̂i

and maximum Fisher information at θ0.

Figure 3.3 displays the average test length for all combinations of conditions. The

x-axis indicates the classification bound, and the point color type represents an item

bank with a particular lower asymptote. Several aspects of Figure 3.3 are of note. First,

consider the two major similarities across both plots in the upper panels. Either when

c = 0 (the blue diamonds) or when θ0 ∈ {1.5, 3.0} (the two right-most sets of points

on either plot), the average test length remains similar regardless of whether selecting

items by maximizing Fisher information at θ̂i or θ0. As expected, the average test

length only substantially differs when c > 0 and θ0 is negative. The left most points

on either plot clearly show the effect of c > 0 on average test length. When c = .25

and θ0 = −3.0 (e.g., trying to classify only the poorest students as in need of remedial

help), the SPRT stopping rule either takes approximately 174 items (if selecting items

by maximizing Fisher information at θ̂i) or 24 items (if selecting items by maximizing

Fisher information at θ0) to make a decision. Note that “an average test length of 174
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Figure 3.3: Average test length and classification accuracy using an SPRT stopping
rule with different item selection algorithms, classification bounds, and lower asymp-
totes. For each combination of item selection algorithm, classification bound, and lower
asymptote, test length was averaged across N = 10, 000 simulees generated from a
N(0, 1) distribution with a minimum test length of jmin = 4 and a maximum test
length of jmax = 200. For the SPRT stopping rule, δ = .1 and α = β = .05.
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items” severely underestimates the average number of items required to make an SPRT-

based decision, as most of the moderate-to-high ability simulees bump up against the

cap of jmax = 200 items. Even when c = .125, changing the item selection algorithm to

maximum Fisher information at θ0 from maximum Fisher information at θ̂i corresponds

to a dramatic decrease in the average number of items required to classify simulees above

the bottom two cut-points.

Surprisingly, the upper panels of Figure 3.3 also reveal conditions in which selecting

items by maximizing information at the current ability estimate is more efficient, on

average, than selecting items by maximizing information at the cut-point. In fact, if

θ0 = 3.0, selecting items at θ̂i results in a shorter average test length than selecting items

at θ0 for all three of the item parameter banks (16.1 versus 16.7 items, on average, for

the bank with c = .25, 33 versus 40 items, on average, for the bank with c = .125,

and 43 versus 49 items, on average, for the bank with c = 0). These results reinforce

conclusions drawn from the upper left quadrant of Figure 3.2: given an examinee with

low ability relative to the cut-point, one should select items closer to true ability than

the cut-point. Note that if θ0 = 3.0, then practically all simulees have low ability relative

to the cut-point.

The bottom two panels of Figure 3.3 display the classification accuracy rates cor-

responding to each of the upper plots. Notice that using either of the item selection

algorithms for a given classification bound by item bank results in nearly identical clas-

sification accuracies. Therefore, the increased number of items due to selecting items

by maximizing Fisher information at θ̂i does not result in a concurrent increase in clas-

sification accuracy. In fact, with few exceptions, those conditions resulting in fewer

items being selected given a particular classification bound also coincide with higher

classification accuracy rates.

One final aspect of Figure 3.3 merits comment. Surprisingly, the average test length
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decreased for classification bounds of θ0 = 1.5 or θ0 = 3.0 when using an item bank

with increased c-parameter. Although strange, these results are an artifact of item bank

generation. Items were generated according to the 3PL with c1j = .25 and corresponding

item parameters (with varying lower asymptotes) were determined via Equation (3.17).

The distribution used to weight the squared difference in item response functions, φ, up-

weighted values close to 0 and down-weighted extreme values. This weighting method

resulted in an adequate match of low-to-moderate difficulty items. However, items of

high difficulty were weighted heavily on the lower asymptote portion of the item response

function, and as a result, required much smaller item discrimination parameters to

compensate. In all cases, the expected log-likelihood ratio maximally increases if items

are administered with difficulty parameters between θi and θ0 (review Figure 3.2). Due

to the inferior set of difficult items, the banks with lower asymptotes of c = 0 or c = .125

did not have sufficiently informative items to efficiently classify moderate-to-high ability

examinees below the highest classification bounds.

3.2.2 Simulation 2

I had earlier proposed an item selection algorithm based on optimizing the expected

log-likelihood ratio given the current ability estimate. This item selection algorithm

was motivated by derivations and graphics (using the expected log-likelihood ratio as

evidence) showing how SPRT-based evidence for classification depends on both the cut-

point and the true latent trait. One could also test whether an expected SPRT-based

item selection algorithm results in decreased test length and equivalent classification

accuracy when compared to standard CCT item selection algorithms.

Based on Chapter 2, one finds several algorithms proported to be efficient for classifi-

cation CATs, including: Fisher information (FI) at θ0, Kullback Leibler (KL) divergence

between θ0 + δ and θ0 − δ, and the expected log-likelihood ratio (ELR) given θ̂i. Two
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methods, Fisher information at θ0 and KL divergence, only consider the classification

bound, but the third method, the ELR, also requires an estimate of θi. To deter-

mine whether the ELR item selection method effects efficient and accurate classification

tests, I simulated CCTs using the same item banks as earlier described to classify 10,000

simulees with θi ∼ N(0, 1) and such that δ = .1, α = β = .05, jmin = 4, and jmax = 200.

Across the classification CATs, θ0 was varied between −3.0 and 3.0 in 1.5 increments,

and item selection was varied between maximum Fisher information at θ0, maximum

KL divergence between θ0 + δ and θ0 − δ, and optimum ELR given θ̂i. Optimum ELR

was defined earlier and selects items to maximize the expected log-likelihood ratio if

θ̂i ≥ θ0 and minimize the expected log-likelihood ratio if θ̂i < θ0.

Figure 3.4 displays the average test length and classification accuracy for all combi-

nations of conditions. The x-axis indicates the classification bound, and the point color

and type represents a particular item selection method. The upper panels of Figure 3.4

present results from the item bank with c = .25, the middle panels present results from

the item bank with c = .125, and the lower panels present results from the item bank

with c = 0. The left panels display the test length averaged across all examinees within

each condition, and the right panels display the corresponding classification accuracies.

The patterns presented in Figure 3.4 are persistent across all three item banks. First,

the expected log-likelihood ratio item selection method (the light-blue dots) always

results in shorter tests than either Fisher information at θ0 (the brown diamonds) or

KL divergence (the red triangles). This relative efficiency of the ELR method increases

as the classification bound shifts away from θ0 = 0. For instance, when θ0 = 0, the

SPRT stopping rule takes approximately 63 (assuming c = .25), 73 (assuming c = .125),

or 83 (assuming c = 0) items if selecting items by maximizing Fisher information at

θ0, as compared to approximately 61, 72, or 82 items, respectively, when selecting

items by optimizing the ELR. However, when θ0 = 3.0, the SPRT stopping rule takes
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Figure 3.4: Average test length and classification accuracy using an SPRT stopping rule
with different classification bound based item selection algorithms, classification bounds,
and lower asymptotes. For each combination of item selection algorithm, classification
bound, and lower asymptote, test length (left panels) and classification accuracy (right
panels) were averaged across N = 10, 000 simulees generated from a N(0, 1) distribution
with a minimum test length of jmin = 4 and a maximum test length of jmax = 200. For
the SPRT stopping rule, δ = .1 and α = β = .05.
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approximately 17, 40, or 49 items if selecting items by maximizing Fisher information at

θ0, as compared to approximately 10, 27, or 38 items when selecting items by optimizing

the ELR. Thus, the ELR results in tests of between 1-2 items shorter for classification

bounds in the center of the distribution but between 7-13 items shorter for cut-points

far above the average ability. Second, the KL divergence and Fisher information at θ0

item selection algorithms result in tests of similar length for each classification bound

by item bank condition. As shown in the left panels of Figure 3.4, the red triangles

generally obstruct the brown diamonds. Although both methods result in a similar

number of items for each condition, maximizing KL divergence is slightly more efficient

for θ0 < 0, and maximizing Fisher information at the cut-point is slightly more efficient

for θ0 > 0. Note that if θ0 < 0, then most simulees are in the upper category, and

the KL divergence index, as defined in Equation (2.24), more accurately reflects the

true location of the average simulee. Finally, all three item selection methods result in

similar accuracy rates for each classification bound by item bank condition, as shown in

the right-hand panels of Figure 3.4. But when the methods diverge in accuracy rates (if

θ0 = 0 and c = 0, for example), then the ELR method leads to either the most accurate

or nearly the most accurate classifications.

As shown in this chapter, items yielding optimal SPRT evidence for classification

depend on the location of true ability, θi, relative to the classification bound, θ0. Se-

lecting items by maximizing information at the classification bound is frequently not

optimal. However, the increase in average test length by selecting items at the clas-

sification bound as compared to selecting items at the optimal location of b is much

smaller than when selecting items at proximal estimates of θi. Yet selecting items by

optimizing the expected log-likelihood ratio with respect to an ability estimate improves

over alternative methods regardless of classification bound or item bank and with no

loss in classification accuracy.
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Although many researchers suggest selecting items to maximize information at θ0,

the results presented in this chapter are still counterintuitive. The recommendation

to select items at the classification bound should arise from the desire to elicit the

most informative expected response. If a test administrator gives an examinee a highly

difficult item (well beyond the cut-point) and the examinee incorrectly responds to the

item, then the test administrator learns very little about the examinee’s ability relative

to the cut-point. However, as clearly laid out in Equation (3.6), even if the examinee

correctly responds to the very difficult item, the test administrator learns very little

about the examinee’s ability relative to the cut-point. One could not classify Einstein

as a master in introductory physics if Einstein correctly responded to all questions of

an advanced physics exam. But a better item selection algorithm would consider both

the ability of an examinee as well as the classification bound.

In the next chapter, I present the compensatory, multidimensional IRT model as a

generalization of the unidimensional 3PL IRT model. Because the functional form of

both models are similar, one could apply item selection lessons derived from unidimen-

sional IRT models in determining optimal item selection methods in multidimensional

classification tests.



Chapter 4

Multidimensional Algorithms

In this chapter I briefly describe multidimensional IRT models and propose novel

item selection algorithms and stopping rules for use in multidimensional mastery test-

ing. Because one finds several generalizations of unidimensional models, I first survey

diverse methods of measuring and classifying examinees among multiple dimensions

before choosing a particular model for the purpose of simulations.

4.1 Multidimensional IRT and Mastery Testing

Multidimensional IRT models require added examinees for model calibration and

increased computer resources for prospective adaptive testing algorithms than typical

unidimensional IRT models. However, modeling item responses by incorporating addi-

tional dimensions has been shown to increase the measurement efficiency and accuracy

of adaptive tests (e.g., Frey & Seitz, 2009). For instance, Segall (1996) compared a nine-

dimensional, simple structure, multidimensional model against separate, unidimensional

models and found that the multidimensional adaptive test required fewer items than the

unidimensional adaptive tests to attain a specific SEM on each dimension. As Segall

46



47

(1996) wrote, “the gains in efficiency obtained by [multidimensional adaptive tests] de-

pend on the correlations among the dimensions ... the larger the magnitude of these

correlations, the higher the gains in efficiency over [unidimensional adaptive tests]” (p.

347). These results have been replicated across a variety of conditions (e.g., Wang &

Chen, 2004, as cited in Frey & Seitz, 2009) or measurement models (e.g., Segall, 2001,

who added a second-order factor to capture the correlation between the lower-order

dimensions). Multidimensional models (and adaptive tests) yield better estimates of

multidimensional traits than separate unidimensional scales because “when the dimen-

sions measured by a test or battery are correlated, responses to items measuring one

dimension provide clues about the examinee’s standing along other dimensions” (Segall,

2000, p. 53).

Although multidimensional IRT models are increasingly recommended for use in

precision-based adaptive tests, few researchers have applied mastery testing algorithms

to multidimensional IRT models. The first attempt at multidimensional mastery testing

(Spray, Abdel-Fatah, Huang, & Lau, 1997) approximated a multidimensional item bank

with a set of unidimensional item parameters and a unidimensional function separat-

ing masters from non-masters. Despite finding sufficiently high classification accuracy

across all conditions (.93–.98), Spray et al. (1997) did not compare their unidimen-

sional approximation with the appropriate multidimensional algorithm. In contrast to

Spray et al. (1997), Glas and Vos (2010) outlined a basic procedure for multidimensional

mastery testing (MCMT) and found that their multidimensional algorithm resulted in

increased efficiency relative to unidimensional approximations. Unfortunately, results

from Glas and Vos (2010) are tempered by model choice and stopping rule. Glas and

Vos (2010) built their MCMT algorithm around a multidimensional version of the one-

parameter logistic model (see Equation 2.3). Moreover, they chose to use Bayesian

decision theory, which requires specification of a (fairly arbitrary) loss function. The
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most recent study of multidimensional mastery testing was undertaken by Seitz and Frey

(2013). Unlike the aforementioned studies, Seitz and Frey (2013) applied the SPRT to

multidimensional adaptive testing and compared their results to corresponding unidi-

mensional algorithms. Unsurprisingly, accounting for multiple dimensions resulted in

slightly shorter tests and more accurate classifications than ignoring the relationship

between dimensions. Yet Seitz and Frey (2013) only considered one (mastery on all

dimensions) version of the classification problem, one (the SPRT) stopping rule, and

an inefficient (maximize the determinant of Fisher information at the current ability

estimate) item selection algorithm. In the following sections, I describe a more gen-

eral conceptualization of multidimensional mastery and propose novel item selection

algorithms and stopping rules designed to better consider multidimensional space.

One can also classify examinees on multiple dimensions by appropriating diagnostic

classification models. Unlike multidimensional item response theory (MIRT) models,

diagnostic classification models (DCM) assume that the latent space consists of di-

chotomous or polytomous skills that combine to form K-dimensional, discrete cognitive

states. Recently, DCMs have been proposed as an alternative to MIRT models for use in

adaptive testing algorithms (e.g., Cheng, 2009; Gierl & Zhou, 2008; McGlohen & Chang,

2008). Unlike MCMT, which must assume that “passing” a test requires examinees to

be in a particular region of multidimensional space, DCMs quantify “passing” as to

whether or not an examinee evidences a certain constellation of requisite attributes. In

the following sections of this chapter, I discuss various multidimensional item response

theory models and contrast continuous trait conceptions of mastery with those based

on discrete states. I then outline novel stopping rules and item selection algorithms for

use in multidimensional mastery tests.
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4.1.1 Multidimensional Item Response Theory Models

The most common generalization of the unidimensional binary response model (Equa-

tion 2.1) to multiple ability dimensions assumes that the log-odds of response is a linear

function of latent ability. For instance, let θ be the multidimensional latent variable

underlying responses to test items, assume that responses are conditionally independent

(see Footnote 1) given a fixed θ = θi, and allow all responses to be scored either 0 or 1.

Then the probability of examinee i correctly responding to item j is often defined by

the following IRF:

pj(θi) = Pr(Yij = 1|θi,aj , dj , cj) = cj +
1− cj

1 + exp[−(aTj θi + dj)]
, (4.1)

where aj represents the multidimensional slope, and all item parameters are analogous to

those defined in Equation (2.1). Equation (4.1) is typically referred to as a compensatory

multidimensional IRT (C-MIRT) model. Reckase (1985; also Ackerman, 1994) described

how one can find multidimensional correlates of discrimination (MDISCj =
√

aTa), the

signed distance from the origin corresponding to the line of maximum slope (Tj =

−dj
MDISCj

), and the angle with respect to arbitrary axis θk coinciding with the maximum

slope on that axis (αj = arccos
(

ajk
MDISCj

)
)1.

Hooker, Finkelman, and Schwartzman (2009) critiqued the use of compensatory

multidimensional IRT models. Specifically, they noted that “in the popular class of lin-

early compensatory models, every nonseparable test has a response sequence for which

maximum likelihood estimates of abilities are paradoxical” (p. 420). By paradoxical,

they simply meant that when using a C-MIRT model where items can load on more

than one dimension, “the estimate of ability [on one dimension] can either be made to

increase by changing a correctly answered item to incorrect, or to decrease by changing

1Although Reckase (1985) derived these relationships for models without lower asymptotes, the
properties also hold if cj > 0.
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an incorrectly answered item to correct” (p. 20, italics in original). Because students

generally assume that a correct answer should result in an increased exam score, these

test properties seem paradoxical and difficult to justify. van der Linden (2012) showed

that as long as Equation (4.1) defines the fundamental form of the IRT model, then

compensation among ability dimensions necessarily follows. Common alternatives to

C-MIRT models that do not suffer from paradoxical properties include the partially

compensatory class of IRT models.

Equation (4.1) assumes that latent ability combines in a linear or compensatory

fashion to predict item responses. These compensatory (or disjunctive) models predict

that if an item loads on K dimensions, then high ability on one of those dimensions

compensates for lower abilities on the other K − 1 dimensions. Alternatively, one could

assume that sufficient levels of all traits underlying responses to an item are required for

a high probability of correctly responding to that item. These partially compensatory

(or conjunctive) models assume that a correct answer to an item evinces mastery on

all of the attributes comprising the item. Assume a multidimensional trait vector, θ,

and conditionally independent 0–1 responses given fixed θ = θi. Then the partially

compensatory multidimensional IRT model (PC-MIRT; Bolt & Lall, 2003) defines the

probability of examinee i correctly responding to item j as

pj(θi) = Pr(Yij = 1|θi,aj ,bj , cj) = cj + (1− cj)
K∏
k=1

(
1

1 + exp[−ajk(θik − bjk)]

)qjk
,

(4.2)

where qjk = 1 if item j loads on dimension k (and qjk = 0 otherwise), ajk and bjk

represent the kth discrimination and difficulty parameter of the jth item, θik is the kth

element of θi, and k = 1, 2, . . . ,K indexes dimension. Referring to 1
1+exp[−ajk(θik−bjk)]

as the kth component probability of the jth item (see Embretson, 1984, p. 178), then
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the PC-MIRT model assumes that unless every item-specific component probability is

sufficiently large, then an examinee would have small probability of correctly responding

to the item. Both Bolt and Lall (2003) and Babcock (2011) were able to estimate

parameters for the PC-MIRT model, but Babcock (2011) commented that “the [partially

compensatory] model requires a large [sample size]” (p. 327) and “the model functioned

best when the latent traits had a low true [ability] correlation” (p. 327). Regardless

of model type, IRT typically assumes a continuous (or semi-continuous) latent trait.

Probability increases in Equation (4.1) or (4.2) if examinee i has more of an attribute

along a particular dimension. In the next sub-section, I describe analogous response

models that conceptualize the latent ability underlying responses to items as a discrete

collection of (on/off, yes/no, have/have not) skills.

4.1.2 Multidimensional Diagnostic Classification Models

Typical multidimensional IRT models quantify ability as composed from continuous

latent traits. One could alternatively conceptualize a multidimensional attribute vector

as comprising a constellation of 0–1 discrete states. Diagnostic classification models

(DCM; Rupp & Templin, 2008) quantify the latent space as a series of dichotomous (or

polytomous) attributes. Rupp and Templin (2008) and Rupp, Templin, and Henson

(2010) overviewed the most common DCMs, the use of DCMs in attribute testing, and

the most common methods of estimating parameters of different DCMs. They also com-

pared diagnostic classification with other common latent variable models, such as the

IRT models described in Equations (4.1) and (4.2). Unlike IRT models, which gener-

ally possess little within-item multidimensionality, DCMs contain “latent variables that

typically operationalize more narrowly defined constructs – so that each item requires

multiple component skills” (Rupp & Templin, 2008, p. 230). Because of the differ-

ence in overall and within-item dimensionalities, DCMs are known to poorly retrofit
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assessments originally designed for broadly-based, IRT traits (Gierl & Cui, 2008).

As in IRT, DCMs are typically divided into conjunctive and disjunctive models.

Conjunctive models require that an examinee possesses all attributes comprising an

item to have a high probability of correctly responding to that item. Common conjunc-

tive models include the deterministic input noisy-and-gate (DINA; Junker & Sijtsma,

2001), the noisy input determinstic-and-gate (NIDA; Junker & Sijtsma, 2001), and the

fusion model (Rousseau et al., 2007). The DINA models item response probabilities with

item-specific slipping (i.e., the probability of an incorrect response given an examinee

with all of the required attributes for solving an item) and guessing parameters, whereas

the NIDA models these probabilities with attribute-specific slipping and guessing pa-

rameters. Neither the DINA nor NIDA model posits an interaction between attributes

and item difficulty save for defining the attributes required for solving an item. The

fusion model includes both an interaction between attributes and items and an addi-

tional parameter that accounts for auxiliary attributes. Specifically, let αik indicate

whether examinee i has attribute k, let sjk designate the probability of an examinee

with attribute k incorrectly responding to part of an item requiring attribute k, let gjk

represent the probability of an examinee without attribute k correctly responding to

the part of an item requiring attribute k, and let qjk = 1 if item j requires attribute k.

Then the fusion model defines two additional parameters, πj and rjk, such that

πj =

K∏
k=1

Pr(Yijk = 1|αik = 1) =

K∏
k=1

(1− sjk)qjk (4.3)

and

rjk =
Pr(Yijk = 1|αik = 0)

Pr(Yijk = 1|αik = 1)
=

gjk
1− sjk

. (4.4)

Equation (4.3) defines the probability of an examinee correctly responding to an item
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given all of the attributes required for that item, and Equation (4.4) defines the penalty

accrued (relative to the perfect examinee) by an examinee not having attribute k. Using

Equation (4.3) and (4.4), the fusion model is defined as

pj(θi,αi) = Pr(Yijk = 1|θi,αi, bj , πj , rj) =
πj
∏
k r

(1−αik)qjk
jk

1 + exp(θi − bj)
, (4.5)

where θ represents a continuous latent trait that limits the probability of response for a

particular examine, and all other terms were defined above. The additional parameters,

πj and rjk, were constructed from sjk and gjk due to identifiability concerns (e.g., Wang,

Chang, & Huebner, 2011, p. 257).

Unlike conjunctive models, disjunctive DCMs require examinees to only possess one

of the attributes composing an item to have a high probability of correctly respond-

ing to that item. Common disjunctive DCMs include the deterministic noisy-or-gate

(DINO), noisy input deterministic-or-gate (NIDO), and the compensatory, reparame-

terized unified model (C-RUM) (see Rupp & Templin, 2008). Not surprisingly, DINO

defines the probability of response by modeling item characteristics, whereas NIDO de-

fines the probability of response be modeling attribute characteristics. Moreover, many

disjunctive DCMs are discrete analogues of standard, multidimensional IRT models.

For instance, let ζi0 be the log-odds of an examinee answering item i correctly without

any of the required attributes, let ζik be the gain in log-odds of an examinee answering

an item correctly if he/she has attribute k, and define all other terms as in Equation

(4.5). Then the C-RUM defines the probability of a correct response for examinee i to

item j as

pj(αi) = Pr(Yij = 1|αi, ζj) =
1

1 + exp[−(ζj0 +
∑

k ζjkαikqjk)]
. (4.6)

Equation (4.6) is very similar to Equation (4.1) with the continuous latent trait vector
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replaced by discrete attributes.

DCMs have been proposed as alternate measurement models for adaptive tests.

Therefore, one could develop mastery testing algorithms corresponding to DCMs. In

contrast to IRT, DCMs would directly quantify the probability of mastery (assuming

mastery is defined as a set of multidimensional attribute vectors) and, thus, require

little modification for use in mastery testing algorithms (although, see Rupp & Templin,

2008, p. 235, for an argument against using DCMs for classification). Thus, henceforth,

I focus on developing and testing multidimensional classification algorithms using the

IRT measurement model with continuous latent trait vectors. Any mention of DCMs

will only be for comparative purposes. In the next sub-section, I briefly summarize

multidimensional conceptions of mastery using IRT models.

4.1.3 Multidimensional Mastery Testing

Multidimensional computerized mastery testing (MCMT) requires algorithms to de-

termine when an examinee’s latent trait is located within a pre-specified region of multi-

dimensional space. These regional definitions can also be used to determine the optimal

item selection rules for differentiating two examinees slightly within each region. For

example, Chapter 3 shows that items should be selected primarily based on the cut-

point separating categories. Because the multidimensional compensatory IRT model, as

defined in Equation (4.1), is similar in form to the 3PL model, one should also pick mul-

tidimensional mastery items based on the boundary between mastery and non-mastery.

Very little work has extended mastery testing to multidimensional problems. The

first paper to discuss multidimensional mastery testing, Spray et al. (1997), quanti-

fied mastery based on a minimally competent percentage of correct responses, p0 =∑
j pj(θ0). If p0 is determined beforehand and the sample sequence of items is known,
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then θ0 divides the latent space into two regions: a mastery region, in which the per-

centage of correct responses is typically greater than p0, and a non-mastery region, in

which the percentage of correct responses is typically less than p0. As Spray et al. (1997)

noted, the values of θ0 that satisfy p0 =
∑

j pj(θ0) define a curve in RK , where K is

the dimension of θ. To illustrate the passing region described by Spray et al. (1997),

I generated J = 40 parameters to fit a two-dimensional C-MIRT model with ā1 = .81

(sa1 = .59), ā2 = .84 (sa2 = .61), d̄ = −.53 (sd = .82), and c = 0. I then determined

(θ1, θ2) pairs that would result in average, model-predicted probabilities of p0 = .4,

p0 = .6, and p0 = .8. The resulting classification bound functions are plotted in Figure

4.1. Note that for p0 = .4, and p0 = .8, the threshold functions define non-linear curves

in two-dimensional space.

As originally proposed by Spray et al. (1997), constructing these constant probabil-

ity classification bounds requires an unchanging set of parameters and a fixed model.

Different models will yield different mastery regions. One could, of course, define the

mastery region based on a test set of items and then interpolate a curve between those

points to use with alternative item banks or IRT models. However, Glas and Vos (2010)

argued that the passing region should not necessarily be directly related to the un-

derlying model. According to Glas and Vos (2010), “the choice of compensatory or

non-compensatory model is an empirical matter, ... [whereas] the choice of ... [classi-

fication region] is a value judgment determined by the opinion of who can be qualified

as a master” (p. 429). In other words, responses to mathematical comprehension items

might (empirically) be determined by a linear combination of reading and computational

abilities, but examinees might still need sufficient ability on both dimensions to qualify

as a master. Disconnecting the mastery decision from the item response function, Glas

and Vos (2010) defined two types of classification procedures. A non-compensatory (or

conjunctive) classification procedure requires examinees to be above a threshold on all
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θ1

θ2

p0 = .4
p0 = .6
p0 = .8

Figure 4.1: Classification bound functions assuming a minimal, constant, model-
predicted probability for passing the test. Probabilities were generated using the two-
dimensional C-MIRT model with ā1 = .81, ā2 = .84, d̄ = −.53, and c = 0.
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dimensions to qualify as a master. An example of a two-dimensional, non-compensatory

classification task is provided in Figure 4.2. One could modify non-compensatory clas-

sification regions for use in diagnostic classification modeling by requiring the posterior

probability of an examinee on each of the required attributes to exceed some threshold.

Conversely, a compensatory classification procedure requires a linear combination of an

examinee’s traits to be above a threshold for the examinee to qualify as a master. An

examinee of a two-dimensional, compensatory classification task is provided in Figure

4.3.

Glas and Vos (2010) proposed compensatory and non-compensatory classification

regions for constructing loss functions in multidimensional space. Once loss functions

were defined, they used Bayesian decision theory to both select items and make classifi-

cation decisions and found that multidimensional CMT improved over a unidimensional

analogue as the correlation between the dimensions decreased.

The most recent conception of multidimensional CMT was described by Seitz and

Frey (2013). As in Spray et al. (2011), Seitz and Frey (2013) were unable to generalize

the SPRT stopping rule without severe restrictions on the item bank and the classifica-

tion function. For instance, Seitz and Frey (2011) chose an item bank with between-item

unidimensionality. Because they assumed that each item only loaded on one dimension,

they simplified the classification task by comparing every θ0k + δ against θ0k − δ, where

θ0k is the cut-point for dimension k. Therefore, the SPRT described by Seitz and Frey

(2013) contrasts the specific hypotheses: H0 : θi = θ0− δ and H1 : θi = θ0 + δ. Because

the point hypotheses are the same for all examinees and all items, these authors avoid

constructing a mastery region or considering the distance between each examinee’s trait

level and the border of that region. Moreover, as shown in Figures 4.2 and 4.3, testing

θ0 + δ against θ0 − δ would be consistent with non-compensatory, compensatory, or

a variety of other classification bound functions. Additionally, Seitz and Frey (2013)
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θ1

θ2

Figure 4.2: A diagram of a non-compensatory classification task. An examinee is re-
quired to be in the shaded, green box (upper-right) to be considered a master and,
therefore, must be above the threshold on both dimensions.
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θ1

θ2

Figure 4.3: A diagram of a compensatory classification task. An examinee is required
to be in the shaded, green box (upper-right) to be considered a master. However, for
this task, a sufficiently high ability on one dimension would compensate for a low ability
on the other dimension.
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avoided developing or using item selection algorithms appropriate for mastery tests and,

instead, used an algorithm synonymous with maximizing Fisher information at the cur-

rent ability estimate. Thus, in the remaining sections of this chapter, I propose modified

SPRT-based stopping rules and item selection algorithms appropriate for determining

whether examinees are within regions of multidimensional space.

4.2 Multidimensional Stopping Rules

In the following sub-sections, I propose generalizations of unidimensional CMT stop-

ping rules to mastery tests comprised of multiple dimensions. The compensatory MIRT

model, as defined in Equation (4.1), will be used to illustrate application of the methods.

However, any of the stopping rules can be used, in principle, with any MIRT model.

4.2.1 Multidimensional Sequential Probability Ratio Tests

Spray et al. (1997) noted a problem in generalizing the SPRT to multidimensional

IRT models. Rather than defining point hypotheses to represent each category, one

“would need to define the likelihood ratio as before along two distinct curves approxi-

mately parallel to the [classification bound]” (p. 5). However, as is immediately obvious

if superimposing classification bound functions onto a contour plot of the log-likelihood

function, in almost no circumstance is the likelihood ratio constant along two curves

parallel to the classification bound function. Therefore, the SPRT point hypotheses

must depend on the location of θ̂i. Because many pairs of points could be selected that

compare values in the mastery region to values in the non-mastery region, any reason-

able SPRT generalization must satisfy several criteria. Let H1 be composed of a curve

with all points δ away from the classification bound function and in the mastery region,

and let H0 be composed of a curve with all points δ away from the classification bound
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function and in the non-mastery region. Then the points chosen along H1 and H0 to

be compared in a likelihood ratio must: (1) be likely relative to other points along the

curves defining the hypotheses; (2) be close to each other (in terms of likelihood) relative

to other pairs of points along the curves defining the hypotheses; and (3) be close to

each other (in terms of distance) relative to other pairs of points defining the curves

along the hypotheses. Given these criteria, I developed two possible generalizations of

the fixed-point SPRT to multiple dimensions: the Constrained SPRT (C-SPRT) and

the Projected SPRT (P-SPRT).

The Constrained SPRT (C-SPRT) determines the fixed points used in the likelihood

ratio test statistic by finding the maximum likelihood estimate constrained to lie on the

classification bound function. Specifically, define a classification bound function, g(θ),

satisfying the equality constraint g(θ) = 0. g(θ) can be a linear function, a curvilinear

function, or a piece-wise function. For instance, the function

g(θ) = θ2 + 1.5θ1 − .5

would define the compensatory classification bound θ2 = −1.5θ1 + .5, whereas the

function

g(θ) =


θ1 − 2 if θ2 ≥ 1

θ2 − 1 if θ1 ≥ 2

1 otherwise

would define the non-compensatory classification bound such that θ1 > 2 and θ2 > 1

designates masters. After item jtmp, the C-SPRT algorithm would find the maximum

likelihood estimate constrained to lie on the classification bound function,
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θ̂0 = arg max
θ∈Θ0

[
log[L(θ|yi, jtmp

)]
]
, (4.7)

where Θ0 := {θ : g(θ) = 0} and

log[L(θ|yi, J)] =

J∑
j=1

[
yij log[pj(θ)] + (1− yij) log[1− pj(θ)]

]
. (4.8)

Given θ̂0, the C-SPRT determines the line perpendicular to g(θ) = 0 and chooses values

±δ away from θ̂0 along this line. These values are then compared in a log-likelihood

ratio to pre-specified critical values.

Calculating the points to use in a likelihood ratio requires some knowledge of ele-

mentary calculus. Define θl = θ̂0 − δθδ and θu = θ̂0 − δθδ to be the lower and upper

values used in a log-likelihood ratio. For these values to be appropriate, θδ should be

a unit-length vector such that θ̂0 + θδ is on the line orthogonal to the tangent plane

∇g(θ̂0)T [θ − θ̂0] = 0. The symbol ∇g(θ) represents the vector of partial derivatives

of g(θ) with respect to θ. From basic calculus, h(t) = θ̂0 + t∇g(θ̂)0 determines the

line orthogonal to the plane tangent to g(θ̂0) (e.g., Stewart, 2007, p. 549). Therefore,

t = 1
||∇g(θ̂0)||

, where || · || is the Euclidean norm, so that θδ = ∇g(θ̂0)

||∇g(θ̂0)||
.

Two examples should clear up any confusion from the previous paragraph. First,

assume a classification problem with g(θ) = θ2 +1.5θ1− .5, and let θ̂0 = [1,−1]T . These

properties define a compensatory classification problem with the line θ2 = .5 − 1.5θ1

separating masters from non-masters and the point θ̂0 = [1,−1]T on that dividing line.

Then ∇g(θ̂0) = [1.5, 1]T , so that θδ = ∇g(θ̂0)

||∇g(θ̂0)||
= [1.5/

√
3.25, 1/

√
3.25]T . δθδ should be

added to θ̂0 = [1,−1]T to determine the two points compared in a log-likelihood ratio.

Second, assume a classification problem with
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g(θ) =


θ2 + .1θ2

1 − 2 if θ1 > 0

θ1 if θ2 ≥ 2

0 otherwise

,

and let θ̂0 = [2, 1.6]T . These properties define a mixed compensatory/non-compensatory

classification bound function so that an examinee must have true θ1 > 0 as well as

having θ2 > 2 − .1θ2
1 for them to be considered a master. Given θ̂0 = [2, 1.6]T (so

that θ1 > 0), the appropriate gradient would be ∇g(θ̂0) = [0.4, 1]T , so that θδ =

∇g(θ̂0)

||∇g(θ̂0)||
= [0.4/

√
1.16, 1/

√
1.16]T . In this case, δθδ should be added to θ̂0 = [2, 1.6]T

to determine the two points compared in a log-likelihood ratio. Figure 4.4 depicts the

process of finding θu and θl to construct the C-SPRT given a particular classification

bound function, MIRT model, and set of item responses. Note that the C-SPRT does

not require a global estimate of θ̂.

In contrast to the C-SPRT, the Projected SPRT (P-SPRT) determines the fixed

points used in the likelihood ratio test statistic by projecting the unconstrained MLE

orthogonally onto the closest point of the classification bound surface. As before, define

a classification bound function, g(θ), satisfying the equality constraint g(θ) = 0, and

let θ̂jtmp be the maximum likelihood estimate after jtmp items. Then the projected

maximum likelihood estimate after jtmp items would be

θ̂0 = arg min
θ∈Θ0

||θ̂jtmp − θ||, (4.9)

where || · || is the Euclidean norm function. After determining θ̂0 from Equation (4.9),

the P-SPRT would proceed in the same manner as the C-SPRT. Figure 4.5 depicts the

process of finding θu and θl to construct the P-SPRT given a particular classification
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Figure 4.4: A diagram of the Constrained SPRT in two dimensions. The likelihood was
constructed using the compensatory MIRT model, as defined in Equation (4.1), and the
classification bound function was constructed assuming a compensatory classification
task with g(θ) = θ2 + 1.5θ1 − .5.
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bound function, MIRT model, and set of item responses. Note that unlike the C-

SPRT, the P-SPRT does require a global estimate of θ̂ to find the closest point on the

classification bound function.

Once θl = θ̂0 − δθδ and θu = θ̂0 − δθδ are found for a particular classification

bound function, g(θ), and a constrained ability estimate, θ̂0, the log-likelihood ratio of

examinee i manifesting θu relative to θl would be

Ci, j = log
[
LR(θu,θl|yi, j

]
= log

[
L(θu|yi, j)
L(θl|yi, j)

]
= log

[
L(θu|yi, j)

]
− log

[
L(θl|yi, j)

]
(4.10)

regardless of whether using the C-SPRT or P-SPRT to determine classification.

The C-SPRT and P-SPRT pick the closest point on the classification bound in

slightly different ways. The P-SPRT defines closest based on the distance between

the current ability estimate and the classification bound function. In contrast, the C-

SPRT defines closest based on the log-likelihood function along the classification bound.

Whereas the C-SPRT can be justified using a similar rationale as to the justification

underlying generalized likelihood ratios in sequential stopping problems, the P-SPRT

should only result in efficient and accurate classification tests when the classification

bound function roughly aligns with a contour of the log-likelihood function.

4.2.2 Multidimensional Generalized Likelihood Ratio Tests

Unlike modifications needed to generalize the SPRT to multiple dimensions (assum-

ing, of course, hypotheses as functions rather than points), the Generalized Likelihood

Ratio Test naturally generalizes to multidimensional classification problems. Define a

classification bound function, g(θ) = 0, that separates a non-mastery region, Θn, from

a mastery region, Θm. Then an extension of the simple GLR (e.g., Thompson, 2009,

2010) test statistic can be written as
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Figure 4.5: A diagram of the Projected SPRT in two dimensions. The likelihood was
constructed using the compensatory MIRT model, as defined in Equation (4.1), and the
classification bound function was constructed assuming a compensatory classification
task with g(θ) = θ2 + 1.5θ1 − .5.
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Gi, j = sup
θ1∈Θm

(
log
[
L(θ1|yi, j)

])
− sup

θ2∈Θn

(
log
[
L(θ2|yi, j)

])
. (4.11)

This Multidimensional Generalized Likelihood Ratio (M-GLR) statistic corresponds to

the maximum of the likelihood conditional on being within the mastery region divided by

the maximum of the likelihood function conditional on being within the non-mastery

region. For simple classification bound functions, these maximums are easily found

using a constrained optimization routine. Of course, as in the unidimensional case, one

could define the mastery region (and non-mastery region) as restricted to lie a certain

distance from the classification bound function by choosing an appropriate δl such that

hl(θ) = θ0− δlθδ and an appropriate δu such that hu(θ) = θ0 + δuθδ (where θ0 satisfies

g(θ0) = 0). One could also find (e.g., Bartroff, Finkelman, & Lai, 2008) values to plug

into the likelihood function (as well as critical values) via simulation. However, in all

cases, the relevant unidimensional theory would also accommodate multidimensional

classification problems. Figure 4.6 depicts points selected to construct a M-GLR given

a particular classification bound function, MIRT model, and set of item responses.

Rather than comparing two fixed points, one could instead define composite hy-

potheses

H0 : θ ∈ Θn

H1 : θ ∈ Θm

and compare a weighted average of the likelihood ratio across each composite hypothesis.

Weighted likelihood ratios are well-known in statistics (e.g., Dickey, 1971), and averaging

the likelihood ratio across two regions relates to Bayes factors (e.g., Lachin, 1981; Lavine

& Schervish, 1999). Using previous notation, let wij be a weight function for examinee
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Figure 4.6: A diagram of the Multidimensional GLR in two dimensions. The likeli-
hood was constructed using the compensatory MIRT model, as defined in Equation
(4.1), and the classification bound function was constructed assuming a compensatory
classification task with g(θ) = θ2 + 1.5θ1 − .5.
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i after j items, and let µm(wij) =
∫
Θm

wijdθ and µn(wij) =
∫
Θn

wijdθ. Then the

Weighted GLR (W-GLR) can be defined as

Gi, j = log

[∫
Θm

wijL(θ|ui, j)dθ
µm(wij)

]
− log

[∫
Θn

wijL(θ|ui, j)dθ
µn(wij)

]
. (4.12)

In practice, researchers should set wij equal to the the prior distribution of θ, in which

case Gi, j would be the logarithm of the Bayes factor. Jha, Clarke, Langmead, Legay,

Platzer, and Zuliani (2013) proposed comparing Gi, j to an a priori specified number, T ,

choosing hypothesis H1 if Gi, j > log(T ) and choosing hypothesis H0 if Gi, j < log(1/T ).

Jha et al. (2013) found that given comparable thresholds, the resulting sequential

Bayesian test needed fewer samples than the corresponding SPRT.

Berger (2012) argued that “in sequential scenarios, there is no need to ‘spend α’ for

looks at the data” when using Bayesian tests because “posterior probabilities are not

affected by the reason for stopping experimentation” (p. 49). In this case, one would

simply calculate the posterior probability of being in the mastery or non-mastery regions

and choose a hypothesis if the posterior probability of that hypothesis is greater than

some 1− α. For example, let

π(θ|yi, jtmp
) =

π(θ)L(θ|yi, jtmp
)∫

Θ π(θ)L(θ|yi, jtmp
)dθ

(4.13)

denote the posterior density of θi after jtmp items. Then the Bayesian Credible Region

(BCR) method would select the alternative hypothesis if
∫

Θm
π(θ|yi, jtmp

) > 1− α, the

null hypothesis if
∫

Θn
π(θ|yi, jtmp

) > 1−α, and administer another item if neither of those

conditions held. Because the ultimate decision relates to the posterior probability of

mastery, one could think of the decision process supported by Berger (2012) depending

on bounds of a Bayesian credible region.
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4.2.3 Multidimensional Curtailed Procedures

As in the unidimensional case, multivariate versions of the SPRT (and GLR) as-

sume potentially unlimited test lengths. One could also generalize curtailed methods

to multidimensional classification algorithms. Because curtailed procedures only de-

pend on the linked sequential decision procedure, these methods are easily generalized

to multidimensional adaptive tests. Specifically, let Di, jtmp be the temporary decision

after jtmp < jmax, and assume that the test has not been stopped by jtmp items. As

in the unidimensional case, set Djtmp = n if Ci, jtmp < (Cl + Cu)/2, set Djtmp = m if

Ci, jtmp > (Cl + Cu)/2, and pick two error rates, 0 ≤ ε1 < .5 and 0 ≤ ε2 < .5. Then the

probability of being declared a non-mastery by maximum test length is

Prθ̃(Di, jmax = n|Ci, jtmp) = 1− Prθ̃(Di, jmax = m|Ci, jtmp) ≈ Φ

(
C0 − Eθ̃(Ci, jmax

|Ci, jtmp
)√

Varθ̃(Ci, jmax
|Ci, jtmp

)

)
,

(4.14)

where

Eθ̃(Ci, jmax |Ci, jtmp) = Ci, jtmp +

jmax∑
j=jtmp+1

Eθ̃

(
log

[
L(θu|yij)
L(θl|yij)

])
, (4.15)

Varθ̃(Ci, jmax |Ci, jtmp) =

jmax∑
j=jtmp+1

Varθ̃

(
log

[
L(θu|yij)
L(θl|yij)

])
, (4.16)

θ̃ is the assumed ability under which the expectation/variance are evaluated, and Φ(·)

is the CDF of a standard normal distribution. Although the expectation and variance

are with respect to a vector, the probability, and thus, the likelihood ratio, are scalar

functions. In essence, the multivariate SPRT with Stochastic Curtailment (M-SCSPRT)

results in a unidimensional SCSPRT where the direction of projection is normal to the

nearest point on the classification bound function (however defined).
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Given the simple generalization of SCSPRT to multiple dimensions, the multivariate

SPRT with Predictive Power (M-PPSPRT) can then be determined using

PrΘ(Di, jmax = n|Ci, jtmp) =

∫
Θ
π(θ|yi, jtmp

)Prθ(Di, jmax = n|Ci, jtmp)dθ, (4.17)

where π(θ|yi, jtmp
) is the posterior distribution of θ given response pattern yi, jtmp

and

prior distribution π(θ), as defined in Equation (4.13). The M-PPSPRT takes every

possible θ ∈ Θ, projects each point onto the nearest part of the classification bound

function, uses the vector normal to the tangent plane for that part of the classification

bound function to calculate the SCSPRT, and weights each SCSPRT by the corre-

sponding θ’s posterior density. In both the multidimensional SCSPRT (M-SCSPRT)

and multidimensional PPSPRT (M-PPSPRT), practitioners would compare the proba-

bility of non-mastery by the end of the test to 1− ε1 if Djtmp = n or to ε2 if Djtmp = m.

In the current section, I have proposed several novel stopping rules for multidimen-

sional mastery testing, including the: (1) Constrained SPRT (C-SPRT), (2) Projected

SPRT (P-SPRT), (3) Multidimensional GLR (M-GLR), (4) Weighted Likelihood Ratio

(W-GLR), (5) Bayesian Credible Region (BCR), (6) Multidimensional SCSPRT (M-

SCSPRT), and (7) Multidimensional PPSPRT (M-PPSPRT). In the next chapter, I

propose a study to assess several of these stopping rules (in terms of classification ac-

curacy and average test length) when implementing multidimensional mastery tests.

However, each of these stopping rules requires a method of selecting future items items.

As in the unidimensional case, the method of selecting items is integral to the perfor-

mance of M-SCSPRT and M-PPSPRT algorithms. Therefore, in the final section of

this chapter, I describe algorithms appropriate for choosing items for multidimensional

classification tests.
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4.3 Multidimensional Item Selection Algorithms

Multidimensional mastery testing algorithms also require methods of selecting items.

Most of the unidimensional item selection algorithms, including those based on Fisher

information and Kullback-Leibler divergence, have been generalized to multidimensional

adaptive tests. The current section details common item selection algorithms in mul-

tidimensional adaptive tests and proposes novel item selection algorithms appropriate

for mastery problems.

4.3.1 Fisher Information Methods

Many of the common Fisher information-based algorithms using in multidimensional

adaptive tests were summarized by Frey and Seitz (2009). In general, Fisher information

is defined as the negative expected second derivative of the log-likelihood with respect

to θ. With respect to the 3PL C-MIRT model, Fisher information for item j can be

written as a function of true θ (e.g., Wang & Chang, 2011),

Ij(θ) = −E
[
∂2 log[L(θ|y)]

∂θ∂θT

]
=

[1− pj(θ)][pj(θ)− cj ]2

pj(θ)[1− cj ]2
aaT , (4.18)

where pj(θ) is defined in Equation (4.1). As in the unidimensional 3PL, Fisher infor-

mation relates to the asymptotic variance of θ̂ for a given θ. Unfortunately, Equation

(4.18) is a matrix, so that choosing an item to minimize the asymptotic variance of θ̂1

does not necessarily contribute to minimizing the asymptotic variance of any other θ̂k

(where k > 1). Several methods have been proposed to aggregate information across

all of the dimensions to choose succeeding items. One commonly used method (called

the D-Method) chooses items that minimize the volume of the confidence ellipsoid for θ

(e.g., Segall, 1996). Assume that θ is normally distributed with prior variance Σ. Then

the volume of a confidence ellipsoid for θ after item jtmp is proportional to
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GVar(θ) =

∣∣∣∣ jtmp−1∑
j=1

Ij(θ) + Ijtmp(θ) + Σ−1

∣∣∣∣−1

. (4.19)

If the first jtmp−1 items have already been administered, then practitioners can choose

the item jtmp that minimizes Equation (4.19) at θ = θ̂i.

Another commonly method of aggregating information of the Fisher information

matrix (called the T-Method) chooses the next item by minimizing the average asymp-

totic variance of θ̂i across all dimensions. Because the total variance is simply the sum

of asymptotic variances, practitioners can choose item jtmp by minimizing

TVar(θ̂i) = tr

( jtmp−1∑
j=1

Ij(θ̂i) + Ijtmp(θ̂i) + Σ−1

)−1
 , (4.20)

where the trace function, tr(·), adds together all of the elements on the diagonal of the

matrix inside.

van der Linden (1999) suggested selecting items to minimize the variance in a par-

ticular direction (called the L-Method). Following van der Linden (1999), assume that

a practitioner wants to summarize ability in multiple directions by using the composite

score λTθ, where λ is a vector of positive numbers that sum to 1. Then the variance of

λT θ̂i after item jtmp can be written as

Var(λT θ̂i) = λTVar(θ̂i)λ = λT
[ jtmp−1∑

j=1

Ij(θ̂i) + Ijtmp(θ̂i) + Σ−1

]−1

λ. (4.21)

All of the proposed Fisher information algorithms can be varied by taking weighted

averages of these functions across a well-defined region to account for variability in

the maximum likelihood estimate. Moreover, all of the unidimensional criticisms of

maximizing Fisher information at θ̂i also apply to minimizing one of the asymptotic
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variances defined by Equations (4.19)–(4.21). In fact, Reckase (2009) explained that

“having both a correct and incorrect response [is not] sufficient to guarantee that the

location of the maximum likelihood point [for a multivariate ability vector] would have

finite values for all coordinates” (p. 142). Unlike the unidimensional case, obtaining

a finite maximum likelihood estimate for θi using the C-MIRT model requires correct

and incorrect responses on a variety of items that measure different dimensions of the

underlying space. Additionally, selecting items by minimizing Equations (4.19)–(4.21)

at θ̂i is still not optimal in determining whether θi ∈ Θm. Therefore, I will shortly

propose modified item selection algorithms appropriate for multidimensional mastery

testing. First, I explain alternative multidimensional item selection algorithms, based

on Kullback Leibler divergence, that directly account for the uncertainty in θ̂i early in

an adaptive test.

4.3.2 Kullback-Leibler Methods

Kullback-Leibler divergence methods are generally recommended to account for the

uncertainty in θ̂i early in an adaptive test. Veldkamp and van der Linden (2002) gen-

eralized Chang and Ying’s (1996) KL information index to multiple dimensions. As

before, let the Kullback-Leibler (KL) divergence for the jth item be defined as (see

Section 2.3.2 for corresponding motivation)

KLj(θi||θ) = pj(θi) log

[
pj(θi)

pj(θ)

]
+ [1− pj(θi)] log

[
1− pj(θi)
1− pj(θ)

]
, (4.22)

where pj(θi) is determined by the C-MIRT model as defined in Equation (4.1). Then

the multidimensional KL divergence index can be defined as

KLj(θ̂i|wij) =

∫
ΘD

wijKLj(θ̂i||θ)µ(dθ), (4.23)
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where wij is some weight function, usually the prior distribution of θ, π(θ), or the poste-

rior distribution of θi after j−1 items, π(θ|yi, j−1). In Equation (4.23), one must specify

a (generally symmetric) domain of integration, which is represented by ΘD. Wang and

Chang (2011) proposed that ΘD in two-dimensions be square, rectangular, circular, or

elliptical with θ̂i as the center of the domain. In three (or more dimensions), ΘD would

usually be a (hyper) cube, rectangular prism, sphere, or ellipsoid, although one could

justify using additional geometric shapes given a particular problem. Oddly, Wang and

Chang (2011) found that KL divergence indices resulted in a larger Euclidean distance

between θ̂i and θi than D-Method Fisher information and multidimensional mutual

information indices, which is inconsistent with comparable unidimensional algorithms.

They claimed that “in the multidimensional case, items with larger [KL divergence] do

not necessarily provide higher power for discriminating θ1 from θ̂1” (p. 379), and sug-

gested that “perhaps, this phenomenon can be further boiled down to the compensatory

nature of the [C-MIRT] model” (p. 380). As will be shown forthwith, the Fisher and

KL divergence indices can be applied to mastery problems with a well-specified domain

of integration. In fact, the corresponding domain of integration for multidimensional

mastery problems might alleviate inefficiencies in the multidimensional KL divergence

algorithm.

4.3.3 Mastery Testing Methods

Based on Chapter 3, selecting items by maximizing information at the classification

bound (in unidimensional CMT) typically results in shorter average tests than selecting

items by maximizing information at proximate ability estimates. One would suspect

that conclusions drawn from Chapter 3 should carry over into multidimensional mas-

tery testing algorithms. Therefore, selecting items at the classification bound function
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separating mastery from non-mastery should result in shorter average tests than select-

ing items at θ̂i. Unfortunately, any attempt to generalize cut-point based algorithms to

multidimensional mastery testing leads to a familiar problem. How does one choose an

item based on the cut-point separating categories when that cut-point is an uncountably

infinite set? Not surprisingly, in parallel with the solutions described for generalizations

of the SPRT, one finds several, reasonable solutions.

Let θ̂0 be the optimal point on the classification bound function as defined by either

P-SPRT or C-SPRT. Then a simple cut-point based item selection algorithm would

select items that minimize Equation (4.19) or Equation (4.20) at θ̂0. However, prac-

titioners generally desire items that separate masters from non-masters (along the line

perpendicular to the classification bound function), and Equations (4.19) and (4.20)

consider all directions as equally important. A more sophisticated algorithm would find

the line normal to the tangent plane defined by θ̂0, θδ = ∇g(θ̂0)

||∇g(θ̂0)||
, and then select items

that minimize Equation (4.21) with λ = θδ.

Unlike the unidimensional case, choosing the optimal cut-point for multidimensional

mastery testing requires a (fallible) estimate of θ̂0. One could better account for un-

certainty in θ̂0 by maximizing information (or minimizing the asymptotic variance)

across a region. With respect to multidimensional Fisher information, one could take

Equation (4.21) with λ = θδ and average across the surface defined by g(θ) = 0.

In other words, the proposed algorithm would be based on integrating fj(θ|wij) =

wij
||∇g(θ)||2∇g(θ)TVar(θ)∇g(θ) along the surface defined by g(θ) = 0. For simplicity,

assume that K ∈ {2, 3} and a parameterization of the surface can either be written

as r(θ1) = [θ1, fs(θ1)] or r(θ) = [θ1, θ2, fs(θ1, θ2)]. Then Fisher information averaged

across the classification bound function/surface (S-FI) would be defined as

SIj(θ|wij) =

∫
Θ1

f(r(θ1)|wij)
∣∣∣∣∣∣∣∣r(θ1)

dθ1

∣∣∣∣∣∣∣∣ dθ1 (4.24)
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if K = 2 or

SIj(θ) =

∫
ΘD

f(r(θ)|wij))
∣∣∣∣∣∣∣∣r(θ)

dθ1
× r(θ)

dθ2

∣∣∣∣∣∣∣∣ dθ1dθ2 (4.25)

if K = 3, where × stands for the cross-product operator, ΘD denotes the area of inte-

gration in Θ1 ×Θ2, and wij is either the prior distribution of θ, π(θ), or the posterior

distribution of θi after j − 1 items, π(θ|yi, j−1). Note that the above parameterization

cannot be used for non-compensatory classification bound functions. Instead, parame-

terize r in terms of an auxiliary variable, t, where r(t) is on the line [θ01 − t, θ02] when

t < 0 and the line [θ01, θ02 + t] when t > 0. Due to the lack of a derivative for t = 0,

T = (−∞, 0) × (0,∞). A similar r(t1, t2) parameterization should be specified for a

three-dimensional, non-compensatory, classification bound function.

All of the heretofore mentioned multidimensional mastery testing item selection

algorithms are based on maximizing Fisher information (or a function of Fisher infor-

mation) at (or along) the classification bound function. Not surprisingly, the methods

just described also apply to the other item selection algorithms with minimal alter-

ations. To construct a KL divergence based item selection algorithm for multidimen-

sional mastery testing, let θu = θ + δ∇g(θ) and θl = θ − δ∇g(θ) be vectors of points

normal to the classification bound function at some θ ∈ Θ0. Then one could define

fj(r(θ)|wij) = wijKLj(θu||θl) and evaluate f(r(θ)|wij) at θ̂0 (similar to L-FI at the

classification bound function). Alternatively, one could integrate fj(r(θ)|wij) between

endpoints equidistant from θ̂0.

As in the unidimensional case, the proposed KL divergence index for multidimen-

sional mastery testing assumes that every examinee is in the mastery region. One could

also generalize the weighted log-odds ratio (LO; Lin & Spray, 2000) or mutual informa-

tion (MI; Weissman, 2007) item selection algorithms to multidimensional classification
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problems. To generalize the weighted log-odds ratio, let

LOj(θu||θl) =
∑
y

E log

([
pj(θu)

pj(θl)

]Y
÷
[

1− pj(θu)

1− pj(θl)

]1−Y
)
, (4.26)

= E(Y = 1) log

[
pj(θu)

pj(θl)

]
− [1− E(Y = 1)] log

[
1− pj(θu)

1− pj(θl)

]
(4.27)

where θu and θl are defined above and E(Y = 1) is the classical difficulty of an item

as explained in Chapter 2. Yet Chapter 3 indicated that the optimal item for an SPRT

algorithm depends on the location of true ability relative to the classification bound, and

Equation (4.26) only considers the location of the average examinee. A better algorithm

would take the expected log-likelihood (as in the KL divergence index) conditional on

proximate ability estimates. This expected log-likelihood ratio function for the jth item

would then be

ELRj(θ̂i) = Eθ̂i

[
log
[
LR(θu,θl|Yij)

]]
(4.28)

= pj(θ̂i) log

[
pj(θu)

pj(θl

]
+ [1− pj(θ̂i)] log

[
1− pj(θu)

1− pj(θl)

]
, (4.29)

where ELRj(θ̂i) stands for “the expected log-likelihood ratio for prospective item j

given θ̂i”, and pj(θ̂i) is calculated using Equation (4.1) with θ̂i inserted in place of θi.

Finally, if θ̂i ∈ Θm, then item j should be chosen to maximize Equation (4.29), whereas

if θ̂i ∈ Θn, then item j should be chosen to minimize Equation (4.29).

Mulder and van der Linden (2010) and Wang and Chang (2011) also generalized

a mutual information item selection rule to multiple dimensions. In general, mutual

information, MI(x; y) =
∑

x

∑
y f(x, y) log

[
f(x, y)
f(x)f(y)

]
, is the KL divergence between the

joint distribution of (x, y) and the product of the marginal distributions. Mulder and
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van der Linden (2010) took f(y) to be π(θ|yj−1), the posterior distribution of θ after

j− 1 items and took f(x) to be Prj(Y = y|yi, j−1), the posterior predictive distribution

given the previous responses. Then multidimensional mutual information simplifies to

MIj(ΘD) =
∑
y

∫
ΘD

Prj(Y = y|yi, j−1)π(θ|yj−1) log

[
Prj(Y = y|θ)

Prj(Y = y|yi, j−1)

]
dθ. (4.30)

where ΘD is the domain of integration. Because Mulder and van der Linden (2010)

and Wang and Chang (2011) were assessing multidimensional item selection rules in

precision-based CAT, ΘD was taken to be the entire space. However, a more appro-

priate item selection rule in MCMT would take the surface integral of f(r(θ)|yi, j−1) =∑
y Prj(y = y|yi, j−1)π(θ|yj−1) log

[
Prj(Y=y|θ)

Prj(Y=y|yi, j−1)

]
across θ ∈ Θ0 such that g(θ) = 0.

I therefore have described several item selection algorithms appropriate for multi-

dimensional mastery testing, including: (1) D-FI at θ̂0, (2) T-FI at θ̂0, (3) L-FI at θ̂0

with λ = θδ, (4) S-FI along Θ0, (5) L-KL comparing θu to θl, (6) S-KL along Θ0, (7)

L-LO comparing θu to θl, (8) L-ELR comparing θu to θl conditional on θ̂i, and (9)

M-MI. In the next chapter, I describe simulations intended to compare several of the

proposed MCMT item selection algorithms and stopping rules given a variety of item

bank and distributional configurations.



Chapter 5

Study Design and Procedures

In this chapter, I describe a simulation study that was designed to compare test

length and classification accuracy for a variety of MCMT stopping rules and item selec-

tion algorithms. I first discuss properties of the latent trait distribution, IRT model, and

testing process. I then outline the ability estimation methods, item selection algorithms,

and stopping rules that were used in the simulations.

5.1 Assessment Properties

5.1.1 Item Bank and IRT Model

Two simulated item banks were employed, each consisting of J = 900 items on K = 2

dimensions with parameters calibrated according to the C-MIRT model, as defined in

Equation (4.1). Following Wang and Chen (2004), one of the item banks was constructed

to have between-item multidimensionality, and the other item bank was constructed to

have within-item multidimensionality. Note that Reckase (2009) acknowledged that lit-

tle work has adequately addressed necessary properties of multidimensional item banks.

Therefore, the item banks were constructed to be similar in overall information under

80
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the assumption that the relative pattern of results should apply to other pairs of similar

item banks.

Both of the C-MIRT item parameter banks were constructed according to the fol-

lowing algorithm:

• MDISC-parameters were generated from a log-normal distribution with a log-

mean of µlog = 0.50 and a log-standard deviation σlog = 0.10 (corresponding to

a mean of approximately µ = 1.657 and a standard deviation of approximately

σ = 0.166, and is similar to how the a-parameters were generated in Babcock &

Weiss, 2009). If an item loaded on both dimensions, the square of the first a-

parameter, a2
j11

, was generated uniformly between 0 and MDISC2
j , and the square

of the second a-parameter, a2
j2, was set to MDISC2

j − a2
jk1

. If an item only loaded

on one dimension, the square of the a-parameter corresponding to that dimension

was set to MDISC2
j .

• b-parameters were generated from a uniform distribution between −3.5 and 3.5,

a distribution slightly wider than one adopted in Wang and Chen (2004). After

generating bj for an item, the corresponding threshold parameter was set to dj =

−bjaTj 1. Note that the C-MIRT model, as defined in Equation (4.1), is specified

in terms of item threshold parameters rather than item difficulties.

• c-parameters were set to .2 to mimic a multiple choice test with five response

possibilities per item.

As described by Wang and Chen (2004), item banks with within-item multidimen-

sionality have individual items loading on more than one dimension. For this study,

the within-item multidimensional bank had all J = 900 items loading on all K = 2 di-

mensions. Although this structure never could be recovered by a factor rotation matrix,
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many of the items had near zero loadings on one of the dimensions, and psychometricians

could conceivably set that loading to zero. In contrast to within-item multidimensional

banks, the between-item multidimensional bank had individual items loading on only

one dimension but the pooled items loading on multiple dimensions. One could think of

between-item multidimensionality as an extreme form of simple structure where individ-

ual items tap only one part of a test. For this study, the between-item multidimensional

bank had Jk = 900/2 = 450 items loading on each of the K = 2 dimensions.

5.1.2 Latent Trait Distribution

Two simulation studies were performed. First, the overall accuracy and average

test length was estimated by simulating N = 5,000 θs from a multivariate normal

distribution with µ = 0 and Σ =
[

1 ρ
ρ 1

]
. Given the item banks described in the previous

sub-section, three correlations were assumed between the traits: ρ = 0, ρ = .33, and

ρ = .67. Second, conditional accuracy and test length were determined by simulating

1,000 MCMTs at each point along a 8× 8 square where

θik ∈ {−.7,−.5,−.3,−.1,+.1,+.3,+.5,+.7}. The overall/aggregate test length and

accuracy rates were determined from all combinations of conditions, but conditional

performance (the second set of simulations) was only established for those conditions

deemed efficient and highly accurate according to the distributional simulation. The

exact conditions chosen for the conditional simulation as well as the reasons for choosing

those conditions will be described in Chapter 6.

5.1.3 Classification Bound Functions

Two classification bound functions were used in the simulation: a linear, compen-

satory function where θ2 = −θ1 and a non-compensatory function with mastery defined

as the first quadrant in Cartesian space. These classification bound functions are located
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near the region of highest simulee density. Therefore, the classification tasks proposed

in this study are difficult relative to tasks using other classification bound functions of

a similar shape.

5.1.4 Overall CAT Algorithm

I imposed several restrictions on how items were administered to simulees across all

conditions. Simulees were allowed to take between J = 10 and J = 100 items. The first

four items were always randomly selected. Thereafter, the CAT algorithm bounced back

and forth between estimating examinee θ, checking the stopping rule, and administering

items until either the chosen stopping rule criterion had been satisfied or the maximum

test length had been reached. These procedures are similar to those used in Nydick

(2012). All simulations were performed in R (R Core Team, 2013) using code modified

from the catIrt package (Nydick, 2013).

5.2 Adaptive Testing Procedures

5.2.1 Ability Estimation Algorithms

Several conditions require estimates of the latent trait to either select items or make

a classification decision. Regardless of condition, estimating the latent trait depended

solely on the number of administered items. Before administering each of the first four

items, θ was estimated to be at a randomly chosen point on the [−1, 1]× [−1, 1] square.

Thereafter, θ was estimated using a modified Maximum Likelihood Estimation (MLE)

algorithm. Reckase (2009) noticed that “the maximum likelihood estimation has the

problem that finite estimates of coordinates may not exist when the number of items

that has been administered is small” (p. 320). Therefore, if allowing unbounded MLE

estimates, one would obtain the counterintuitive finding that simulees with true ability
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far away from the classification bound function take longer to classify under some stop-

ping rules than simulees with true ability closer to the classification bound. One could

alleviate concern for unbounded maximum likelihood estimates using two strategies: (1)

assuming bounds on the latent trait or (2) adopting an alternative estimation method.

A common alternative estimation method to MLE is Bayesian Modal Estimation

(BME). Bayesian modal estimates maximize the posterior distribution. As long as the

posterior is a proper distribution, the BME is then

θ̂BME, i = arg max
θ

{
log [L(θ|yi)] + log[π(θ)]

}
, (5.1)

where L(θ|yi) is the likelihood function as defined by Equation (4.8), and π(θ) is the

prior distribution of θ. Unfortunately, the computing time required to find the maximum

of the posterior distribution was exorbitantly long, even when running conditions in

parallel and writing much of the code in a C loop. Therefore, I decided to estimate

ability using a modified MLE algorithm, such that

θ̂MLE, i = arg max
θ∈[−4,4]×[−4,4]

{
log [L(θ|yi)]

}
. (5.2)

Because none of the stopping rules nor item selection algorithms consider the variance

of θ̂, this MLE formation should result in less conservative stopping rule decisions than

an ability estimation procedure based on Bayesian methods.

5.2.2 Item Selection Algorithms

Five of the item selection algorithms were adopted in the simulation: D-FI, L-FI, L-

KL, S-KL, and L-ELR. Due to the lessons from Chapter 3, all of the algorithms selected

items based on the location of the classification bound function. Moreover, each of these

algorithms was described in Chapter 4 and will not be explained. The item selection
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algorithms were chosen for several reasons. First, I wanted to compare an algorithm

that examines all directions (e.g., D-FI) to algorithms that consider only the direction

of the classification bound function. Because D-FI notes only the location and not the

functional form of the classification bound function, one would expect selecting items

by maximizing D-FI to be much less efficient than the other item selection algorithms.

Second, I wanted to test an algorithm based on surface information. In preliminary

simulations, S-FI and S-KL resulted in similar measures of efficiency. However, S-FI

took at least .15 of a second per item, whereas S-KL took less than .04 of a second per

item. As in estimating ability using BME, selecting items based on S-FI would have

resulted in an exorbitantly and impractically long running time given the number of

items, simulees, and overall conditions.

5.2.3 Stopping Rules

The ultimate goal of the simulation was to compare the classification accuracy and

average test length for several stopping rules under a variety of conditions. Five of the

stopping rules were explored in the study: P-SPRT, C-SPRT, M-GLR, M-SCSPRT, and

BCR. Because P-SPRT did not result in accurate adaptive tests (as will be explored

in Chapter 6), M-SCSPRT was based on the C-SPRT formulation. Moreover, W-GLR

and M-PPSPRT were not tested due to their complex integrals and the requisite long

computing time.

The stopping rules adopted the following parameterizations. With respect to the

log-likelihood ratio-based methods, α = β = .1 and δ ∈ {.15, .25}. If using M-SCSPRT,

α = β = .1, δ ∈ {.15, .25}, and ε1 and ε2 were set to .05. The rationale for applying

these values in simulation was discussed in Thompson (2010) (and adapted for Nydick,

2012). Namely, Thompson (2010) concluded that “nominal [percent classified correctly]

had very little effect on observed [percent classified correctly]” (p. 9). In addition to
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Thompson’s conclusions, the values chosen were similar to those recommended for use in

unidimensional mastery testing (e.g., Eggen, 2011; Finkelman 2008a; Lin, 2011; Wang

& Huang, 2011). With respect to BCR, α was set to either .05 or .10. These values are

similar to the specified nominal error rates for the log-likelihood ratio-based stopping

rules.

5.2.4 Overall Conditions

As described in this chapter, I simulated a variety of multidimensional mastery tests

using various item selection algorithms, stopping rules, and distributional properties.

Ultimately, there were 3 (ability correlations) × 2 (classification bound functions) ×

2 (item banks) × 5 (item selection algorithms) × 10 (stopping rules) = 600 overall

conditions. The next chapter compares, in depth, each of those 600 conditions to

determine the optimal multidimensional mastery testing design.



Chapter 6

Simulation Results

These results are summarized in two sections. I first present the overall test length,

classification accuracy, and loss of using particular combinations of conditions when

simulating from a distribution. The first set of simulations lead to specific, optimally

performing conditions. I then describe the conditional classification, accuracy, and

overall loss of using the optimally performing set of conditions for several true ability

vectors. Both simulations address different mastery testing goals: (1) How well the

item selection algorithms and stopping rules perform given a distribution of examinees;

and (2) How well the item selection algorithms and stopping rules perform for specific

simulees near the classification bound function.

6.1 Results 1: Aggregated across a Distribution

The first set of simulations examined the accuracy and test length of various stop-

ping rules, item selection algorithms, and item banks across a distribution of simulees1.

Many practitioners require classification algorithms to be efficient and accurate for all

1All of the tables and figures generated by using statistics aggregated across a distribution of simulees
are presented in Appendices B and C, respectively

87



88

examinees regardless of the distance between a person’s ability level and the closest

point on the classification bound function. Therefore, algorithms that perform well for

examinees near the classification bound function serve little use unless those algorithms

also easily and accurately classify more distant examinees. To determine the overall

classification accuracy and test length, 5,000 θ ∼ N(0, I2) (where Ik is a k-dimensional

identity matrix) were simulated, rotated so that θ1 and θ2 correlated a specific amount2

(either .00, .33, or .67, as explained in Chapter 5), and then tested using each combi-

nation of conditions.

Figure 6.1 displays the average test length and classification accuracy aggregated

over simulees within each of the item selection algorithm (top panels) and stopping

rule (bottom panels) conditions. To construct Figure 6.1, results were averaged across

the latent ability correlation and the item bank conditions. Note that the left side of

Figure 6.1 presents results when using a compensatory classification bound function,

whereas the right side of Figure 6.1 presents results when using a non-compensatory

classification bound function.

Consider the top panels of Figure 6.1. As shown in the upper left panel, item se-

lection does not result in appreciable differences in classification accuracy when using

a compensatory classification bound function. Conversely, the points are a bit more

scattered in the accuracy direction when using a non-compensatory classification bound

function, as shown in the upper right panel of Figure 6.1. However, the pattern of

accuracy results are similar for both the compensatory and non-compensatory classifi-

cation bound functions: L-FI results in higher accuracy than L-ELR and L-KL (which

lead to similar accuracy rates), and S-KL performs at least as well as L-FI in terms

of accuracy. Only D-FI has a contrasting accuracy pattern relative to the other item

2Let Σk = VkΛkV
T
k be the eigendecomposition of desired population covariance matrix Σk with

dimensionality k, and let θ ∼ N(0k, Ik). Then θ̃ = VkΛ
1/2
k θ ∼ N(0k,Σk).
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Figure 6.1: Scatterplots of the percent classified correctly (PCC) by average number
of items administered for different item selection algorithms (top panel) and different
stopping rules (bottom panels) using either a compensatory classification bound function
(left panel) or a non-compensatory classification bound function (right panels).



90

selection algorithms when using a compensatory versus a non-compensatory classifica-

tion bound function. When using a compensatory classification bound function, D-FI

results in the lowest accuracy rate, but when using a non-compensatory classification

bound function, D-FI results in the highest accuracy rate. This finding is probably due

to the form of the classification bound function. D-FI chooses successive items based

on maximizing the determinant of expected test information at the closest point on the

classification bound function, whereas the other algorithms choose successive items by

maximizing information in the direction normal to the classification bound function at

that point. Because the non-compensatory classification bound function has two possi-

ble normal directions, D-FI might protect against items being chosen entirely along one

of those directions. With respect to test length, S-KL leads to the shortest tests when

using a compensatory classification bound but the second longest tests when using a

non-compensatory classification bound. The other four item selection algorithms have

a similar relative distance in average number of items regardless of classification bound

function.

As described in an earlier section, several researchers (e.g., Finkelman, 2008b; 2010;

Vos, 2000) have used a simple loss function to combine accuracy and test length into a

single index. This specific loss function can be presented as

Loss = P × IW + J, (6.1)

where IW is an indicator function for incorrect classification, J is the number of items

given to an examinee, and P is the penalty accrued for an incorrect decision. Because

an average distributes over a linear function, one can write average loss as

Loss = P × (1− acc) + J̄ , (6.2)
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where acc is the percent classified correctly and J̄ is the average number of items across

the appropriate distribution of simulees.

Figure 6.2 displays the average loss for those conditions represented in Figure 6.1 as

the penalty accrued (P ) goes from 0 – 3,000. So that relative loss can be compared as

P increases, the calculated values of loss given a particular P were standardized across

the relevant conditions at that P .

Consider the top panels of Figure 6.2 in parallel with the top panels of Figure

6.1. When using a compensatory classification bound function, the loss lines are nearly

parallel. Surface KL divergence (S-KL) has the best loss, determinant Fisher infor-

mation (D-FI) has the worst loss, and the remaining conditions are similar to each

other irrespective of P . Due to the standardization, the loss plot magnifies very small

differences in accuracy and test length across item selection algorithms when using a

compensatory classification bound function. In contrast to the compensatory classifi-

cation bound function, item selection algorithms have a different relationship between

accuracy and test length when using a non-compensatory classification bound function.

Linear Fisher information (L-FI) has the best loss until P ≈ 1,500. Conversely, linear

expected likelihood ratio (L-ELR) and L-KL result in the worst loss if weighting in-

correct classifications as P ≥ 500 but perform much better if P ≤ 300. S-KL appears

to protect against uninformative items better than D-FI and against poor classification

decisions better than L-ELR and L-KL. Yet L-FI outperforms S-KL for all values of

P . Therefore, the protection gained by using surface information does not appear to

exceed that from items chosen in standard, well-selected directions.

Unlike item selection algorithms, varying the stopping rules appears to have a no-

ticeable effect on classification accuracy, as shown on the bottom of Figure 6.1. Consider

the bottom left panel of Figure 6.1. When using a compensatory classification bound
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Figure 6.2: Average loss within each item selection algorithm or stopping rule for various
values of P , where Loss = P × IW +J (see Appendix B). The upper panels indicate the
average loss for each of the item selection algorithms, whereas the lower panels indicate
the average loss for each of the stopping rules. The left panels represent a compensatory
classification bound function, whereas the right panels represent a non-compensatory
classification bound function.
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function, one finds a nearly linear relationship between number of items and classifica-

tion accuracy. In fact, the OLS slope predicting accuracy from test length when using

a compensatory classification bound function (β̂1 = .0009) is similar to the slope that

I had earlier found in the unidimensional case with a test length of at least 17 items

given comparable stopping rules (β̂1 = .00085; Nydick, 2012, p. 41). However, the

OLS model yields a multiple R2 of .774, indicating that average test length accounts

for much of the variability in classification accuracy. Therefore, most of the stopping

rules perform similarly when using a compensatory classification bound function, so

that applying a slightly more conservative rule results in a slightly better classification

accuracy rate. In contrast, applying various stopping rules to a classification test with

a non-compensatory classification bound function leads to one of two consequences, as

shown on the bottom right of Figure 6.1. First, a stopping rule could result in much

worse classification accuracy compared to other stopping rules that lead to the same

average number of administered items. For instance, P-SPRT with δ = .25 leads to a

similar average number of items as BCR with α = .05 but results in a nearly .04 worse

classification accuracy. Second, the stopping rule could result in a differing number of

administered items without much changing the classification accuracy. For instance, af-

ter removing the four poorly performing conditions (i.e., the P-SPRT and M-SCSPRT

conditions), the OLS slope predicting accuracy from test length when using a non-

compensatory classification bound function is β̂1 = .0003 (with a slightly smaller R2 of

.68).

One could also examine various values of loss to better assess the overall performance

of each stopping rule. These loss values are plotted on the bottom panels of Figure 6.2.

Notice that when using the compensatory classification bound, scaled loss leads to 2-3

clumps of conditions as P increases. If P / 500, then those conditions resulting in

the shortest tests, such as BCR with α = .10 and M-GLR with δ = .25, also yield the
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best loss. In fact, if P / 500, then conditions cluster according to test length, and if

P ' 1,000, then conditions cluster according to accuracy. Note that C-SPRT and M-

SCSPRT, both with δ = .25, result in the least loss for the largest stretch of P and, thus,

potentially optimally balance accuracy and test length concerns. In contrast, when using

a non-compensatory classification bound function, scaled loss tends to cluster into two

groups if P ' 500, as shown on the bottom right panel of Figure 6.2. The C-SPRT, BCR,

and M-GLR conditions result in similar tradeoffs between test length and classification

accuracy, whereas the P-SPRT and M-SCSPRT conditions typically result in the worst

loss. A simple conclusion when examining the bottom panels of Figures 6.1 and 6.2 is

that the projected SPRT, and stochastic SPRT methods do not generalize to complex

classification bound functions. This finding is possibly due to the non-compensatory

classification bound function not aligning with the contours of the likelihood function

and the consequences thereof for several stopping rules.

Thus far, I have only considered the overall effects of different item selection algo-

rithms and stopping rules on the accuracy and test length of MCMTs given certain

classification bound functions. I also examined the correlation between latent ability

dimensions as well as two different item banks. As shown in Appendices B and C, one

finds that lower correlations result in worse performing algorithms (both in accuracy

and test length) regardless of classification bound function and irrespective of whether

one conditions on other variables. For instance, a nearly identical relationship holds

between latent ability correlations, test length, and classification accuracy within each

of the item selection algorithms or stopping rules regardless of whether using a compen-

satory or non-compensatory classification bound function: lower correlations result in

longer and less accurate tests. A more interesting relationship exists, though, between

item selection algorithms or stopping rules, the chosen item bank, and test quality

measures, as shown in in Figures 6.3 – 6.5.
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Figure 6.3: Scatterplots of the percent classified correctly (PCC) by average number
of items administered based on the interaction between item bank and item selection
algorithm using either a compensatory classification bound function (top panels) or a
non-compensatory classification bound function (bottom panels). The left panels are
color coded according to item bank, whereas the right panels are color coded according
to item selection algorithm.
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Figure 6.3 examines the relationship between item selection algorithm and average

test length/classification accuracy within each of the item banks and conditioning on

classification bound function. Consider the top panels of Figure 6.3, which examine this

relationship given the compensatory classification bound function. Interestingly, one

finds that when using a compensatory classification bound function, the within-item

multidimensional bank results in the shortest and most accurate tests for all of the item

selection algorithms. Every pink point is to the left of and above every blue point on

the upper left quadrant of Figure 6.3. And within an item bank, one finds little differ-

ence between item selection algorithms in accuracy and test length but with a single

exception. If using the compensatory classification bound function and the within-item

multidimensional bank, D-FI results in much worse accuracy rates and much longer

tests than the other item selection algorithms. With respect to the non-compensatory

classification bound function, most of the item selection algorithms perform better when

using a between-item multidimensional bank, as shown in the lower panels of Figure

6.3. In fact, all of the item selection algorithms result in shorter tests (and three of the

five item selection algorithms result in more accurate tests) when using the between-

item multidimensional bank than when using the within-item multidimensional bank.

As when using the non-compensatory classification bound, only a single exception be-

lies the general pattern of results: D-FI yields tests of similar length when adopting a

between-item multidimensional bank to those conditions that use the within-item mul-

tidimensional bank. Therefore, D-FI performs similar to other item selection algorithms

when using the worst item bank for a given classification problem but performs much

worse than the other item selection algorithms when using the optimal item bank.

One also finds a clarifying representation of loss for various item selection algorithms

when conditioning on different item banks, as shown in the upper panels of Figure 6.4.
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Figure 6.4: Average loss within each item selection algorithm by item bank or stopping
rule by item bank for various values of P , where Loss = P×IW+J (see Appendix B). The
upper panels indicate the average loss for each of the item selection algorithms by item
bank, whereas the lower panels indicate the average loss for each of the stopping rules
by item bank. The left panels represent a compensatory classification bound function,
whereas the right panels represent a non-compensatory classification bound function.
Colors are coded according to item selection algorithm or stopping rule, whereas line
type is determined by item bank.
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Recall that if only examining item selection on loss given the non-compensatory classi-

fication bound function, L-FI results in the best balance between classification accuracy

and test length for most values of loss, whereas S-KL results in worse loss than L-FI for

all values of P . However, the earlier finding is entirely hidden by the poor performance

of S-KL when using the inappropriate, within-item multidimensional bank. When using

the appropriate item bank (within-item multidimensional for the compensatory classi-

fication bound and between-item multidimensional for the non-compensatory classifica-

tion bound), S-KL yields the lowest loss for nearly all values of P , as evidenced by the

dotted grey line on the upper left panel of Figure 6.4 and the solid grey line on the upper

right panel of Figure 6.4 below all of the other lines on each respective panel. Moreover,

with the sole exception of L-ELR, all of the non-compensatory classification bound item

selection algorithms yield smaller relative loss until P ≈ 2,000 when using the between-

item multidimensional bank than when using the within-item multidimensional bank.

As expected, one discovers few notable relationships between item selection and loss

when using various item banks given the compensatory classification bound function.

All of the lines on the upper right panel of Figure 6.4 are nearly parallel, horizontal,

and predictable.

Figure 6.5 expresses the relationship between various stopping rules and MCMT

performance when using different item banks and conditioning on the compensatory

or non-compensatory classification bound function. As shown in Figure 6.5, one finds

scant evidence of an interaction between item bank and stopping rule when assuming a

compensatory classification bound. All of the pink points are above and to the left of all

of the blue points in the upper left panel of Figure 6.5. Moreover, the order of stopping

rules within each item bank on the accuracy and test length using a compensatory

classification bound function is nearly identical for both the within-item and between-

item multidimensional banks, as shown in the upper right panel of Figure 6.5. Therefore,
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Figure 6.5: Scatterplots of the percent classified correctly (PCC) by average number of
items administered based on the interaction between item bank and stopping rule using
either a compensatory classification bound function (top panels) or a non-compensatory
classification bound function (bottom panels). The left panels are color coded according
to item bank, whereas the right panels are color coded according to stopping rule.
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every stopping rule performs better, on average (i.e., has a greater overall accuracy and a

shorter average test length), when using the within-item multidimensional bank, and the

gain in accuracy and test length appears to be similar regardless of stopping rule. This

relationship between item bank, stopping rule, and test statistics is only approximately

true when examining the non-compensatory classification bound function, as evidenced

by the lower panels of Figure 6.5. Notice that most of the light blue points are above and

to the left of the pink points. In fact, as in the compensatory classification bound, the

stopping rules represented by those six blue points have better classification accuracy

as well as shorter tests when using the between-item multidimensional bank. In the

lower right panel of Figure 6.5, the black, yellow, dark green, brown, red, and light

green points are above and to the left when using the between-item multidimensional

bank as compared to the within-item multidimensional bank. The only outliers to this

general trend are points representing the P-SPRT and M-SCSPRT conditions, those

conditions already identified as poorly performing when using the non-compensatory

classification bound function. The loss conception of performance cleanly expresses this

general trend, as shown on the lower panels of Figure 6.4. When using the compensatory

classification bound, the loss trend shape is nearly identical for a given stopping rule if

selecting items from either item bank. However, the loss curves are all lower throughout

the entire range of P when selecting items from the within-item bank as compared to

the between-item bank. One finds a similar relationship when examining loss for the

non-compensatory classification bound with a few exceptions. First, the between-item

bank results in the lowest loss when using the non-compensatory classification bound

function. Second, P-SPRT and M-SCSPRT result in very large loss regardless of item

bank. Finally, all of the other stopping rules yield similar relative loss after P ≈ 1,000.

To supplement conclusions drawn from Figures 6.1–6.5, several ANOVA tables were

constructed, four of which will be presented forthwith: (1) Tables 6.1 and 6.3 indicate
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the effect of various factors on mean test length for either the compensatory or non-

compensatory classification bound functions, respectively; and (2) Tables 6.2 and 6.4

summarize the effect of various factors on classification accuracy. I have also included

tables describing ANOVAs when predicting three values of mean loss from the same

factors in Appendix B. As I suggested in my earlier study on unidimensional classifica-

tion testing, despite ANOVA being potentially inappropriate given the research design,

several authors have used ANOVA to obtain descriptive measures of variance accounted

for by factors in a Monte Carlo study (e.g., Guyer & Weiss, 2009). All of the following

tables present both η2 = SSF
SST and ω2 = SSF−dfF×MSE

SST+MSE , where SSF is the sums of squares

for factor F , and SST is the total sums of squares. Note that η2 is a positively biased

(similar to R2) estimate of the proportion of variance accounted for by each factor, and

ω2 is a less biased estimated obtained by rearranging formulas for the expected mean

squares (e.g., Abelson, 1985; Olejnik & Algina, 2000). Also notice that the η2 values

and ω2 values are nearly identical across all of the tables, so I will only describe η2.

Based on Tables 6.1 and 6.2, stopping rule, item bank, the true correlation between

latent ability, and the interaction between item bank and stopping rule account for

most of the variability in both test length and classification accuracy when using a com-

pensatory classification bound function. As expected, stopping rule accounts for most

of the observable variance in both test length (η2 = .676) and classification accuracy

(η2 = .466) with item bank accounting for most of the remaining variance (η2 = .230

and η2 = .233 in either case). Therefore, choosing the inappropriate stopping rule or

item bank will have the greatest effect on MCMT properties. Moreover, one also finds

very little interaction between ability correlation and the other factors. In fact, the

two-way and three-way interactions of correlation and any of the other factors result

in the smallest effect sizes in either of the tables. Interestingly, one finds a small but

noticeable effect of the interaction between bank and stopping rule on both test length
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Table 6.1: The sums of squares (Sum Sq.), η2 = SSF
SST , and ω2 = SSF−dfF×MSE

SST+MSE , where
SSF is the sums of squares for a particular factor and dfF is the corresponding degrees of
freedom, for an ANOVA predicting mean test length given a compensatory classification
bound function. The ANOVA was run with all main effects, two-way interactions, and
three-way interactions.

Variance Type Sum Sq. η2 ω2

Correlation (Cor) 947.55 .032 .032

Item Bank (Bank) 6901.34 .230 .230

Select Alg. (Select) 382.07 .013 .013

Stop Rule (Stop) 20301.92 .676 .676

Cor by Bank 20.47 .001 .001

Cor by Select 6.07 .000 .000

Cor by Stop 49.39 .002 .002

Bank by Select 214.77 .007 .007

Bank by Stop 1030.04 .034 .034

Select by Stop 84.24 .003 .003

Cor by Bank by Sel 10.82 .000 .000

Cor by Bank by Stop 1.21 .000 .000

Cor by Sel by Stop 4.52 .000 .000

Bank by Sel by Stop 40.64 .001 .001

Residuals 16.31

Total 30011.36

(η2 = .034) and classification accuracy (η2 = .025) despite minimal visual evidence of

this effect in Figure 6.5. All of the other conditions result in a smaller-than-noticeable

effect and thus are not worth further discussion. One can see the very small relation-

ship between item selection and stopping rule on the accuracy and average test length

of MCMTs when using a compensatory classification bound function in Figure C.8 of

Appendix C.

With respect to the non-compensatory classification bound function, one finds sim-

ilar effects of stopping rule (η2 = .488), item bank (η2 = .198) and the interaction
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Table 6.2: The sums of squares (Sum Sq.), η2 = SSF
SST , and ω2 = SSF−dfF×MSE

SST+MSE , where
SSF is the sums of squares for a particular factor and dfF is the corresponding degrees of
freedom, for an ANOVA predicting mean classification accuracy given a compensatory
classification bound function. The ANOVA was run with all main effects, two-way
interactions, and three-way interactions.

Variance Type Sum Sq. η2 ω2

Correlation (Cor) 0.00841 .185 .185

Item Bank (Bank) 0.01055 .233 .232

Select Alg. (Select) 0.00054 .012 .011

Stop Rule (Stop) 0.02115 .466 .464

Cor by Bank 0.00001 .000 .000

Cor by Select 0.00004 .001 .000

Cor by Stop 0.00010 .002 .000

Bank by Select 0.00044 .010 .009

Bank by Stop 0.00111 .025 .023

Select by Stop 0.00066 .015 .007

Cor by Bank by Select 0.00006 .001 .001

Cor by Bank by Stop 0.00014 .003 .001

Cor by Select by Stop 0.00038 .008 .004

Bank by Sel by Stop 0.00053 .012 .000

Residuals 0.00123

Total 0.04535
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between item bank and stopping rule (η2 = .175) on average test length, as shown

in Table 6.3. Therefore, similar factors result in differences in test lengths for both

the compensatory and non-compensatory classification bound functions. In fact, the

decreased effect of item bank on test length when using the non-compensatory clas-

sification bound is probably due to the four poor performing conditions (i.e., both of

the P-SPRT and M-SCSPRT conditions) that perform differently than the rest of the

stopping rules when adopting a non-compensatory classification bound function. Notice

how those are the only four conditions that lead to conflicting trends in the loss lines of

Figure 6.4. When examining accuracy using the non-compensatory classification bound

function, one finds the strongest effects for stopping rule (η2 = .285), item selection

by stopping rule (η2 = .229), and the three way interaction between item bank, item

selection algorithm, and stopping rule (η2 = .188). Not surprisingly, these relationships

are entirely due to the P-SPRT and M-SCSPRT stopping rules. If running an ANOVA

after eliminating both P-SPRT and M-SCSPRT stopping rules, then item bank has

the strongest effect on classification accuracy (η2 = .507) followed by item selection

(η2 = .108) and stopping rule (η2 = .104). The other factors and interactions have

much smaller effects on classification accuracy.

6.2 Results 2: Conditional on Specific Ability Vectors

This section section examines the accuracy and test length of various stopping rules

and item selection algorithms conditional on particular ability vectors3. Most mastery

tests need not classify all examinees with equal precision. Examinees with ability vectors

close to the classification bound should require more items to determine the appropriate

3All of the figures generated by using statistics conditional on particular ability vectors are presented
in Appendix D.
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Table 6.3: The sums of squares (Sum Sq.), η2 = SSF
SST , and ω2 = SSF−dfF×MSE

SST+MSE , where
SSF is the sums of squares for a particular factor and dfF is the corresponding degrees of
freedom, for an ANOVA predicting mean test length given a non-compensatory classifi-
cation bound function. The ANOVA was run with all main effects, two-way interactions,
and three-way interactions.

Variance Type Sum Sq. η2 ω2

Correlation (Cor) 23.52 .000 .000

Item Bank (Bank) 9372.46 .198 .198

Select Alg. (Select) 2499.74 .053 .053

Stop Rule (Stop) 23168.56 .488 .488

Cor by Bank 31.34 .001 .001

Cor by Select 11.53 .000 .000

Cor by Stop 44.09 .001 .001

Bank by Select 529.32 .011 .011

Bank by Stop 8308.66 .175 .175

Select by Stop 2147.33 .045 .045

Cor by Bank by Select 3.43 .000 .000

Cor by Bank by Stop 20.03 .000 .000

Cor by Select by Stop 45.52 .001 .001

Bank by Select by Stop 1166.62 .025 .024

Residuals 63.67

Total 47435.8
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Table 6.4: The sums of squares (Sum Sq.), η2 = SSF
SST , and ω2 = SSF−dfF×MSE

SST+MSE , where SSF
is the sums of squares for a particular factor and dfF is the corresponding degrees of free-
dom, for an ANOVA predicting mean classification accuracy given a non-compensatory
classification bound function. The ANOVA was run with all main effects, two-way
interactions, and three-way interactions.

Variance Type Sum Sq. η2 ω2

Correlation (Cor) .00228 .014 .014

Item Bank (Bank) .00202 .013 .012

Select Alg. (Select) .01002 .062 .062

Stop Rule (Stop) .04586 .285 .283

Cor by Bank .00033 .002 .002

Cor by Select .00052 .003 .003

Cor by Stop .00151 .009 .008

Bank by Select .00922 .057 .057

Bank by Stop .01417 .088 .087

Select by Stop .03695 .229 .224

Cor by Bank by Select .00008 .000 .000

Cor by Bank by Stop .00227 .014 .013

Cor by Select by Stop .00207 .013 .007

Bank by Select by Stop .03036 .188 .183

Residuals .00343

Total .16110
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classification. Moreover, classification near the bound separating master from non-

master will necessarily be less precise than classification decisions for examinees well

within any category.

The results of the previous section influenced those conditions that I chose to ex-

amine in more depth. For instance, because latent trait correlation did not appear to

have much of an effect on test length or classification accuracy (and next to no interac-

tion with any of the other factors), I decided to only examine the moderate correlation

of ρ = .33. Moreover, I chose to only use the within-item multidimensional bank for

the compensatory classification bound function and the between-item multidimensional

bank for the non-compensatory classification bound function due to their overall per-

formance when simulating from a distribution. Finally, I decided to eliminate the D-FI

item selection algorithm due to inefficiency and the P-SPRT stopping rule due to poor

performance when using a non-compensatory classification bound function. After elim-

inating those conditions deemed inefficient, inaccurate, or uninteresting, I retained 1

ability correlation (ρ = .33) × 1 classification bound function (within-item multidimen-

sionality for the compensatory classification bound or between-item multidimensionality

for the non-compensatory classification bound) × 4 item selection algorithms (L-FI, L-

ELR, L-KL, and S-KL) × 6 stopping rules (C-SPRT and M-SCSPRT with δ = .25,

M-GLR with δ ∈ {.15, .25}, and BCR with α ∈ {.05, .10}) × 2 classification bound

functions = 48 total conditions.

To determine the conditional classification accuracy and test length, 64 ability vec-

tors were chosen to be equidistant along a 8× 8 square with

θik ∈ {−.7,−.5,−.3,−.1,+.1,+.3,+.5,+.7}, rotated based on the correlation matrix

with ρ = .33, and then tested 1,000 times according to each combination of conditions.

Figure 6.6 displays the conditional accuracy rate for several ability vectors and sev-

eral item selection algorithms given a compensatory classification bound function with
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Figure 6.6: Scatterplots of the conditional accuracy rate for various vectors of true ability
when using the compensatory classification bound function and the C-SPRT stopping
rule with δ = .25. Different panels represent different item selection algorithms. Bubbles
are color-coded and sized according to accuracy rate. See the left-most panel of Figure
D.1 for more information.
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ρ = .33, a within-item multidimensional bank, and the C-SPRT stopping rule. For all of

the figures in this section, the size and color of the bubbles represents the accuracy rate,

test length, or loss function: (1) Red large bubbles implies poor accuracy, long tests, or

large loss; (2) blue-green medium bubbles implies medium accuracy, moderately long

tests, or medium-large loss; and (3) light-blue small bubbles implies good accuracy,

short tests, or small loss. One thing to spot across all of the accuracy plots in this

section is their similar appearance. Notice that when using the C-SPRT stopping rule

with a compensatory classification bound function, all of the item selection algorithms

result in very similar accuracy rates for all values of θ. For these conditions, exam-

inees slightly below the classification bound have poorer classification accuracy than

examinees slightly above the classification bound, as evidenced by the slightly larger

and redder bubbles below the classification bound function than above the classification

bound function. But ability vectors slightly further away from the classification bound

function are all classified with the same, exceptional accuracy rate. For the compen-

satory classification bound function, only M-GLR with δ = .25 and BCR with α = .10

result in differently shaped plots, as shown in Figures 6.7 and 6.8. Yet the only differ-

ence between Figures 6.6 and 6.7 or 6.8 is that when using the latter stopping rules, the

first two rows of points below the classification bound are slightly larger and redder.

As in the unidimensional case (see Nydick, 2012), one finds larger discrepancies

between conditions when examining test length rather than classification accuracy. For

example, compare the general pattern of results using a C-SPRT stopping rule with

δ = .25 to that using a M-GLR stopping rule with δ = .15 or a BCR stopping rule

with α = .05, as shown in Figures 6.9–6.11. The particular C-SPRT chosen yields much

shorter tests for true ability vectors close to the classification bound as compared to

the M-GLR and BCR conditions. For these conditions, both the first and second lines

of points are larger when using M-GLR and BCR as compared to C-SPRT. But unlike
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Figure 6.7: Scatterplots of the conditional accuracy rate for various vectors of true ability
when using the compensatory classification bound function and the M-GLR stopping
rule with δ = .25. Different panels represent different item selection algorithms. Bubbles
are color-coded and sized according to accuracy rate. See the left-most panel of Figure
D.1 for more information.
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Figure 6.8: Scatterplots of the conditional accuracy rate for various vectors of true ability
when using the compensatory classification bound function and the BCR stopping rule
with α = .10. Different panels represent different item selection algorithms. Bubbles
are color-coded and sized according to accuracy rate. See the left-most panel of Figure
D.1 for more information.
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classification accuracy, the change in test length is equivalent both above and below

the classification bound function for all stopping rules. Yet when using M-GLR with

δ = .25 or BCR with α = .10, test length is shorter for true ability vectors close to

the classification bound function than C-SPRT with δ = .25 (see, for example, Figure

D.17 or D.19 in Appendix D). This finding emphasizes the important point that when

using a compensatory classification bound function, parameters of a given stopping rule

matter more than the specific stopping rule chosen, and test length is more affected by

these parameter values than accuracy rates. Moreover, distance from the compensatory

classification bound function is more relevant than location, at least for the points

within the chosen rectangle. Notice that the changes in test length or accuracy given

different stopping rules affect all points equally as long as those points are on the same

line parallel to the θ1 + θ2 = 0 classification bound function. One also finds scant

evidence of differences between different item selection algorithms for the compensatory

classification bound function given a particular stopping rule. All quadrants within any

of the presented figures are similar in shape, color, and pattern. These results parallel

and reinforce those results presented in the previous section by implying that the small

differences in accuracy and test length for various item selection algorithms when using

the compensatory classification bound function are the same regardless of true ability.

One finds similar trends for both conditional accuracy and test length when using

a non-compensatory classification bound function, as shown in Figures 6.12–6.14. I

chose to present C-SPRT with δ = .25, M-GLR with δ = .25, and BCR with α = .10

due to their relative dissimilarities. As in the compensatory classification bound, one

finds slightly larger bubbles a similar distance below the non-compensatory classification

bound function than above the non-compensatory classification bound function. There-

fore, in almost all cases, simulees were classified better for true ability vectors above

the classification bound function. This general trend does not hold for the middle two
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Figure 6.9: Scatterplots of the conditional average test length for various vectors of
true ability when using the compensatory classification bound function and the C-
SPRT stopping rule with δ = .25. Different panels represent different item selection
algorithms. Bubbles are color-coded and sized according to test length. See the middle
panel of Figure D.1 for more information.
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Figure 6.10: Scatterplots of the conditional average test length for various vectors of
true ability when using the compensatory classification bound function and the M-
GLR stopping rule with δ = .15. Different panels represent different item selection
algorithms. Bubbles are color-coded and sized according to test length. See the middle
panel of Figure D.1 for more information.
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Figure 6.11: Scatterplots of the conditional average test length for various vectors of
true ability when using the compensatory classification bound function and the BCR
stopping rule with α = .05. Different panels represent different item selection algo-
rithms. Bubbles are color-coded and sized according to test length. See the middle
panel of Figure D.1 for more information.
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dotted lines along the longer side of the rectangle. For those ability vectors near the

classification bend, simulees were more accurately classified when their true ability lie

below the classification bound function rather than above. The divergent trend when

classifying simulees with true ability near the classification bend is most noticeable when

using the BCR stopping rule with α = .10, as shown in Figure 6.14. In fact, BCR with

α = .10 had similar accuracy rates to the alternative stopping rules for all true ability

vectors below the classification bound but much worse accuracy rates for ability vectors

above the classification bound.

A notable exception to the general pattern of accuracy results when using the non-

compensatory classification bound function is the M-SCSPRT stopping rule, as shown

in Figure 6.15. Recall that when using the non-compensatory classification bound, the

M-SCSPRT stopping rule and L-ELR item selection algorithm resulted in accuracy rates

well below most other conditions. Based on the upper-left panel of Figure 6.15, one finds

that the classification accuracy is much worse for practically all latent ability vectors

when using the M-SCSPRT stopping rule with the L-ELR item selection algorithm

than any other combination of conditions. In fact, if examining M-SCSPRT, one finds

similar trends to C-SPRT (or M-GLR/BCR) for all except the L-ELR condition. A

probable reason for the poor classification accuracy when selecting items via L-ELR and

terminating a test by means of M-SCSPRT is that M-SCSPRT requires an estimate of

future items to determine classification probabilities, and L-ELR poorly chooses those

future items given inaccurate θ̂is early in a test.

Figures 6.16–6.18 display the conditional, average test length corresponding to those

conditions presented in Figures 6.12–6.14. Unlike the trends in test length when using a

compensatory classification bound, both the item selection and the stopping rule have

distinct effects on the overall average test length as well as the shift in short/long test

length regions on a given plot. For instance, consider Figure 6.16, which depicts the



117

●

●
●

●
●

●
●

●
●

●
●●

●
●

●●
●●

● ●● ●●
● ●●● ●● ●●● ●●● ●● ●●● ●●●

●● ●●●
●●

●●
●●

●●
●

●●
●

●
●

●

●

θ1

θ 2

L−Fisher Information

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

●

●

●

●

●

●

●

●

●

●

Accuracy

.95

.90

.85

.80

.75

.70

.65

.60

.55

.50

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●
●● ●●

● ●●● ●● ●●● ●●● ●● ●●● ●●●
●● ●●●

●●
●●

●●
●●

●
●●

●
●

●
●

●

θ1

θ 2

L−Expected Likelihood Ratio

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

●

●

●

●

●

●

●

●

●

●

Accuracy

.95

.90

.85

.80

.75

.70

.65

.60

.55

.50

●

●
●

●
●

●
●

●
●

●
●

●
●

● ●●
●●

● ●● ●●
● ●●● ●● ●●● ●●● ●● ●●● ●●●

●● ●●●
●●

●●
●●

●●
●

●●
●

●
●

●

●

θ1

θ 2

L−KL Divergence

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

●

●

●

●

●

●

●

●

●

●

Accuracy

.95

.90

.85

.80

.75

.70

.65

.60

.55

.50

●

●
●

●
●

●
●

●
●

●
●●

●
●

●●
●

●
● ●● ●●

● ●●● ●● ●●● ●●● ●● ●●● ●●●
●● ●●●

●●
●●

●●
●●

●
●●

●
●

●
●

●

θ1

θ 2

S−KL Divergence

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

●

●

●

●

●

●

●

●

●

●

Accuracy

.95

.90

.85

.80

.75

.70

.65

.60

.55

.50

Figure 6.12: Scatterplots of the conditional accuracy rate for various vectors of true
ability when using the non-compensatory classification bound function and the C-SPRT
stopping rule with δ = .25. Different panels represent different item selection algorithms.
Bubbles are color-coded and sized according to accuracy rate. See the left-most panel
of Figure D.1 for more information.
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Figure 6.13: Scatterplots of the conditional accuracy rate for various vectors of true
ability when using the non-compensatory classification bound function and the M-GLR
stopping rule with δ = .25. Different panels represent different item selection algorithms.
Bubbles are color-coded and sized according to accuracy rate. See the left-most panel
of Figure D.1 for more information.
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Figure 6.14: Scatterplots of the conditional accuracy rate for various vectors of true
ability when using the non-compensatory classification bound function and the BCR
stopping rule with α = .10. Different panels represent different item selection algo-
rithms. Bubbles are color-coded and sized according to accuracy rate. See the left-most
panel of Figure D.1 for more information.
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Figure 6.15: Scatterplots of the conditional accuracy rate for various vectors of true abil-
ity when using the non-compensatory classification bound function and the M-SCSPRT
stopping rule with δ = .25. Different panels represent different item selection algo-
rithms. Bubbles are color-coded and sized according to accuracy rate. See the left-most
panel of Figure D.1 for more information.
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average test length for four item selection algorithms when implementing the C-SPRT

stopping rule. Given C-SPRT with δ = .25, all four item selection algorithms yield

longer tests above the classification bound function than below the classification bound

function. The trend across all four C-SPRT test length plots is similar to the accuracy

trend with the exception of a lesser gradation in test length when increasing one’s

distance from the classification bound. However, as is clearly shown, L-ELR results in

longer tests for all true ability vectors than S-KL, which results in longer tests for all true

ability vectors than L-FI or L-KL. Note that the M-GLR stopping rule with δ = .25

evinces the same pattern across item selection algorithms as C-SPRT with δ = .25,

as shown in Figure 6.17. BCR with α = .10 exhibits much smaller differences in test

length than either M-GLR or C-SPRT, as shown by Figure 6.18. Yet the major difference

between BCR and the other stopping rules is the location of efficient performance. Note

that BCR with α = .10 yields moderately long tests for true ability vectors above the

classification bound and much shorter tests for ability vectors below the classification

bound. The center of inefficiency is thus located well within the upper classification

category. However C-SPRT with M-GLR, both with δ = .25, yield tests with the center

of inefficiency closer to the classification bound function. The differences between M-

GLR and BCR are more apparent when comparing M-GLR with δ = .25 (Figure 6.17)

to the less efficient BCR with α = .05 (Figure 6.19). With respect to the latter stopping

rule, one can clearly see a cluster of large red points well within the upper classification

category, and with respect to the former stopping rule, one can see the cluster of large

red points shifted across the classification bound. Therefore, if test practitioners want

to ensure that true masters take the longest tests, then the practitioner should use the

BCR stopping rule; however, if these practitioners only want to ensure that examinees

with true ability within the indifference region (on either side of the classification bound

function) take the longest tests, then s/he should use C-SPRT or M-GLR.
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Figure 6.16: Scatterplots of the conditional average test length for various vectors of
true ability when using the non-compensatory classification bound function and the
C-SPRT stopping rule with δ = .25. Different panels represent different item selection
algorithms. Bubbles are color-coded and sized according to test length. See the middle
panel of Figure D.1 for more information.
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Figure 6.17: Scatterplots of the conditional average test length for various vectors of
true ability when using the non-compensatory classification bound function and the
M-GLR stopping rule with δ = .25. Different panels represent different item selection
algorithms. Bubbles are color-coded and sized according to test length. See the middle
panel of Figure D.1 for more information.
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Figure 6.18: Scatterplots of the conditional average test length for various vectors of
true ability when using the non-compensatory classification bound function and the
BCR stopping rule with α = .10. Different panels represent different item selection
algorithms. Bubbles are color-coded and sized according to test length. See the middle
panel of Figure D.1 for more information.



125

●

●
●

●
●

●●
●

●● ●●
●● ●● ●●● ●● ●●● ●●● ●● ●●● ●●● ●● ●●● ●●● ●● ●●● ●● ●●

●● ●●
●

●●
●

●
●

●

●

θ1

θ 2

L−Fisher Information

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

●

●

●

●

●

●

●

●

●

●

Length

11
19
27
34
41

50
57
64
73
80

●

●
●

●
●

●●
●

●● ●●
●● ●● ●●● ●● ●●● ●●● ●● ●●● ●●● ●● ●●● ●●● ●● ●●● ●● ●● ●● ●● ●

●● ●
●

●
●

●

θ1

θ 2

L−Expected Likelihood Ratio

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

●

●

●

●

●

●

●

●

●

●

Length

11
19
27
34
41

50
57
64
73
80

●

●
●

●
●

●●
●

●● ●●
●● ●● ●●● ●● ●●● ●●● ●● ●●● ●●● ●● ●●● ●●● ●● ●●● ●● ●●

●● ●●
●

●●
●

●
●

●

●

θ1

θ 2

L−KL Divergence

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

●

●

●

●

●

●

●

●

●

●

Length

11
19
27
34
41

50
57
64
73
80

●

●
●

●
●

●●
●

●● ●●
●● ●● ●●● ●● ●●● ●●● ●● ●●● ●●● ●● ●●● ●●● ●● ●●● ●● ●●

●● ●●
●

●●
●

●
●

●

●

θ1

θ 2

S−KL Divergence

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

●

●

●

●

●

●

●

●

●

●

Length

11
19
27
34
41

50
57
64
73
80

Figure 6.19: Scatterplots of the conditional average test length for various vectors of
true ability when using the non-compensatory classification bound function and the
BCR stopping rule with α = .05. Different panels represent different item selection
algorithms. Bubbles are color-coded and sized according to test length. See the middle
panel of Figure D.1 for more information.
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The remaining plots conditional on a particular ability vectors, including the loss

plots with P = 500, are all provided in Appendix D. Note that accuracy generally

outweighs test length for the difficult-to-classify points near the classification bound

function. Therefore, the loss plots generally appear to be similar to the classification

accuracy plots, in that one finds little differences between item selection algorithms (with

the exception of M-SCSPRT and L-ELR when using a non-compensatory classification

bound) and minor differences among various stopping rules.



Chapter 7

Discussion and Conclusion

7.1 Summary and Discussion of Results

This study compared the classification accuracy and test length of various item se-

lection algorithms and stopping rules that were designed to classify examinees into one

of two categories when using a multidimensional IRT model. Conceptualizing multidi-

mensional mastery testing requires constructing a mastery area that is separated from

a non-mastery area by a classification bound function. Whereas unidimensional ability

estimates are always a certain distance from the classification bound, multidimensional

ability estimates can be located different distances from an infinite set of points on the

classification bound function. Therefore, generalizing point-based comparisons, such as

those required for the SPRT, necessitate choosing the appropriate “closest” point(s) on

this function. One could define closest by those points that are closest in distance or

those points that are closest in likelihood. Perhaps unsurprisingly, methods determining

closest by the distance between an ability estimate and the classification bound function

resulted in adequate performance only when the classification bound function aligned

127



128

with the contours of the likelihood function. In those instances, P-SPRT (closest in dis-

tance) resulted in similar loss to C-SPRT (closest in likelihood), primarily because the

orthogonal projection from θ̂i to θ0 terminated in a θ̂0 that approximately maximized

the constrained likelihood. If using a non-compensatory classification bound function,

then the P-SPRT stopping rule was always less accurate than stopping rules with a sim-

ilar average test length. In all cases, BCR yielded short and relatively accurate tests,

and S-KL balanced efficiency with protecting against items chosen in uninformative

directions.

As previously discussed, methods of improving stopping rules and item selection

algorithms could include weighting individual test statistics by posterior densities and

then averaging across some slice or region of the posterior distribution. This idea was

applied to one of the tested stopping rules, BCR, and one of the tested item selection

algorithms, S-KL. BCR was motivated by Berger’s (2012) contention that posterior

probabilities do not depend on the reason for stopping sequential tests. Because of the

direct quantification of posterior probabilities, BCR resulted in the largest dependence

upon testing attributes, such as the nominal α rate, compared to alternate stopping

rules. Yet even if one were to eliminate those simulees who took tests of maximal

length, the average classification accuracy of BCR did not approximate the nominal

1 − α specification. Therefore, the stochastic dependence of a selected item on the

responses to previously selected items must somewhat influence actual error rates for

all of the stopping rules. A future study could compare the classification accuracy

and test length when directly attempting to either quantify the error rates (as done in

this study) or measure loss (as attempted by Glas & Vos, 2010). Glas and Vos (2010)

explained that if minimizing the expected loss, then additional cost parameters could

be added to capture model constraints, such as content balancing, exposure control, etc.

However, Glas and Vos (2010) derived their stopping rules for a simplistic, Rasch-based
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model, and any researchers attempting to further study their method would need to

generalize their equations to more complicated multidimensional models.

With respect to item selection, S-KL yielded tests with approximately the best loss

for either a compensatory or non-compensatory classification problem when using the

most appropriate item bank for that problem. Classifying examinees with respect to a

compensatory classification bound function was best when using the within-item mul-

tidimensional bank, classifying examinees with respect to a non-compensatory classifi-

cation bound function was best when using the between-item multidimensional bank,

and S-KL resulted in suitable loss in each of these cases. S-KL performed well even

though the fixed-point item selection algorithm on which it was based, L-KL, resulted

in relatively inaccurate and inefficient classifications. Yet both KL algorithms circum-

vented problems associated with the multidimensional KL indices that were discussed

by Wang and Chang (2011) and Wang, Chang, and Boughton (2011). Wang, Chang,

and Boughton (2011) explained that their multidimensional KL divergence index will

select items that manifest large MDISCj and where the difficulty of an item is similar to

a linear combination of the current ability estimates (see Wang et al., p. 34). As shown

in Wang and Chang (2011), these facts imply that multidimensional KL divergence will

often select items that poorly differentiate the current ability estimate from true ability.

However, the current study estimated true ability only with respect to the category in

which that ability was located. Rather than integrating KL divergence across a region

of multidimensional space, this study simply compared those points that were required

for adequate classification. And by contrasting points along a line normal to the clas-

sification bound function, the KL indices discussed herein yield large values only if an

item adequately differentiates masters from non-masters.

A common criticism of KL indices as applied to classification testing is that they
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assume that every examinee is a priori in the mastery region. Therefore, maximiz-

ing KL divergence should result in less efficient classification tests if most examinees

are in the non-mastery region. This characteristic of KL divergence was shown in the

second simulation of Chapter 3, whereby the KL divergence-based item selection al-

gorithm yielded the longest unidimensional classification tests when the cut-point was

greater than the prior distribution mean. Unfortunately, the best unidimensional mas-

tery testing item selection algorithm, ELR, which optimizes the expected log-likelihood

ratio taken conditional on the current ability estimate, did not yield accurate multi-

dimensional classifications in many cases. One could improve KL-based measures to

somewhat approximate the decision-making process of ELR by taking into considera-

tion the current ability estimate: if log
[
LR(θ̂u, θ̂l|yi)

]
> 0, maximize KLj(θ̂u||θ̂l), but

if log
[
LR(θ̂u, θ̂l|yi)

]
< 0, maximize KLj(θ̂l||θ̂u). Future studies should consider this

modification of the current KL-based item selection algorithms in both unidimensional

and multidimensional mastery testing.

Several of the stopping rules and item selection algorithms could yield improved

classification accuracy and test length if adapted to aggregate information across a

distribution of simulees. For instance, stochastic curtailment resulted in poorly per-

forming adaptive testing algorithms for both the compensatory and non-compensatory

classification bound functions. With respect to the compensatory classification bound

function, M-SCSPRT barely improved over C-SPRT in terms of average test length

and classification accuracy when using the within-item multidimensional bank. But

the loss function of M-SCSPRT essentially aligned with that of C-SPRT when using a

compensatory classification bound function, so that test practitioners would gain very

little over the simple C-SPRT procedure. With respect to the non-compensatory clas-

sification bound function, M-SCSPRT resulted in shorter test lengths but much worse

classification accuracy than the C-SPRT procedure.
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An alternative to classic stochastic curtailment is the Bayesian-like predictive power

formation, described by Jennison and Turnbull (2000), applied by Finkelman (2010)

to mastery tests, and presented in Equation (4.17) for multidimensional classification

problems. Many authors have criticized predictive power because “it does not have a

clear frequentist interpretation and at the same time is inconsistent with the principles

of Bayesian theory” (Dmitrienko & Wang, 2006, p. 2179). However, as described by

Finkelman (2010), “predictive power implicitly takes the uncertainty about θ into ac-

count via the posterior distribution” (p. 36), which should reduce the dependence of

the conditional probabilities on a particular set of items chosen assuming a particular

θi. One might also improve C-SPRT and M-GLR by averaging across either the pos-

terior distribution (as described by Dickey, 1971 and Kharin, 2011, and presented in

modified form as W-GLR in Equation 4.12) or along the classification bound function.

Although the C-SPRT algorithm compares points of similar likelihood on both sides of

the classification bound function, the ratio of those values might be abnormally small

relative to the ratio of likelihoods a short distance along the classification bound func-

tion away. Moreover, by directly quantifying the average of some attribute within a

region, aggregative methods should also result in adequate error rates for more compli-

cated classification problems, such as those with irregularly shaped classification bound

functions or more than two categories.

Practitioners should also consider the computation time of various item selection

algorithms and stopping rules. Even though S-KL and BCR resulted in tests with the

best loss in many circumstances, they required 6–18 times as much computing time

using R (R Development Core Team, 2013) on a 2GHz Intel Core i7 processor. Many

of the promising item selection algorithms or stopping rules could not be tested in this

study due to the excessively long computing times required. Programmers could design

more efficient algorithms by writing all code directly in a compiled language, such as C,
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but they must know optimal methods of estimating multidimensional integrals to derive

any computing benefit.

7.2 Conclusion

Classification tests can be used to assess everything from job qualifications (e.g.,

ACT, 2007) to teacher certification (e.g., Pearson, 2011). Test items inherently assess

more than one dimension (e.g., Ackerman, Gierl, & Walker, 2003), but practitioners

have few methods available for multidimensional classification. One could, of course,

treat these multidimensional traits as unidimensional and proceed with well-understood

computerized mastery testing algorithms. One could also assume that the test measures

a constellation of discrete states and adopt a popular Cognitive Diagnosis CAT algo-

rithm (e.g., Cheng, 2009; Wang, Chang, & Douglas, 2011). However, most large-scale

tests are based on IRT, and neither of the alternative methods allow for complex areas of

classification. Future researchers would be better served by applying the various array

of sequential tests developed in the statistical and biological literature (e.g., Bartroff &

Lai, 2010; Dallow & Fina, 2010; Dmitrienko & Wang, 2006; Kharin, 2011; Todd, 2007)

to psychometric questions.

This thesis is an attempt to explore the questions associated with applying sequen-

tial analysis to multidimensional psychometric problems. Future studies should derive

and compare alternate generalizations of SPRT and GLR to multidimensional classifi-

cation tasks with a variety of item banks and classification bound functions. Many of

the methods discussed herein have great promise to control the misclassification rate of

multidimensional classification tests. Psychometricians could better direct these meth-

ods to yield adequate classifications by constructing appropriate regions of integration

and/or choosing more appropriate critical values. Due to a maximum test length in
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all CATs, any generalization of sequential stopping rules to multiple dimensions must

include associated curtailment methods. One such method is strict stochastic curtail-

ment (referred to as “conditional power” by Dmitrienko & Wang, 2006), but researchers

have also discussed “predictive power” (combining Bayesian and frequentist methods)

and “predictive probability” (using a strictly Bayesian framework) approaches. Because

of the high costs of computation in multiple dimensions, researchers must consider the

computation time when providing recommendations.

To best apply classification algorithms to multiple dimensions, psychometricians

must understand how those algorithms perform for mastery tests comprised of only

one trait. Much of this thesis discussed open questions in unidimensional classification

testing, including methods of finding the optimal difficulty parameter for efficient clas-

sification or improving previously existing item selection algorithms by considering the

estimated location of the examinee with respect to the classification bound function.

Other existing research topics include applying currently existing algorithms to classifi-

cation problems with more than two categories. Several studies have extended stochastic

curtailment to multiple categories (Wouda & Eggen, 2009) or polytomous IRT models

(Gnambs & Batnic, 2011). However, the authors of these studies used stopping rules

that were arbitrary extensions of Finkelman (2008a) to more than two categories and

alternate models. Better understanding the performance of curtailment-based methods

when using unidimensional models would improve generalizations of those algorithms

to multiple dimensional classification problems.

In practice, items should be chosen from banks that are based off of realistic exams.

Many authors (e.g., Bartroff et al., 2008; Finkelman, 2008a; Gnambs & Batnic; Wouda

& Eggen, 2009) have used items from either traditional achievement or personality mea-

sures. The current study simulated item banks to retain certain distributional prop-

erties. These artificial banks were constructed to reduce dependence of item selection
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algorithm and stopping rule performance on a specific set of limited items. However,

all methods, no matter how abstract and preliminary, must eventually be applied to

serviceable exams.

Although this project varied item selection algorithms and stopping rules, other

properties of the testing algorithm, such as ability estimation, are important in the

performance of adaptive tests. The current study adopted a modified MLE algorithm

due to time constraints, but Bayesian methods should yield stabler estimates of ability

earlier in an adaptive test. Other authors have extended bias-reduction methods, such

as Warm’s (1989) WLE method, to estimate a multidimensional ability vector (e.g.,

Tseng & Hsu, 2001; Wang, 2013). Despite focusing on classification, several mastery

testing stopping rules depend on adequate estimation of examinee ability. Moreover,

simulations in Chapter 3 showed that including knowledge of the current ability estimate

results in a more efficient item selection algorithm than only considering the classification

bound. Therefore, future research must also examine how various ability estimators

interact with stopping rules and item selection algorithms to yield efficient and accurate

classifications.

The discussions and simulations presented herein demonstrate the applicability of

sequential algorithms to classify examinees in regions of multidimensional space. With

the exception of determining the closest classification bound via projection, all of the

stopping rules resulted in fairly efficient and accurate multidimensional mastery tests.

Limitations of this study, of course, include the small number of conditions and the

assumed latent space of only K = 2 dimensions. These methods should easily extend

to K ≥ 3 dimensions, but the computing time required as K increases would quickly

become exceedingly long. Future research should adopt and extend the proposed algo-

rithms to supply adaptive mastery tests that deliver the most accurate classifications
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using the least number of items. Only after calibrating the properties of classifica-

tion algorithms to exact specifications can practitioners use these algorithms to make

informative and productive decisions.
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Appendix A

Derivations

A.1 Maximum of the Log-Likelihood Ratio for a Correct

Response

To determine the effect of item parameters on the classification bound (θ0) yielding

the best evidence for classification, assume an examinee correctly responded to one 3PL

item with arbitrary a (discrimination), b (difficulty), c (guessing), and δ (half-width of

the indifference region) parameters. Then we can define a function

f1(θ0) = log

[
p(θ0 + δ)

p(θ0 − δ)

]
= log[p(θ0 + δ)]− log[p(θ0 − δ)], (A.1)

where p(x) = c+ (1− c) exp[a(x−b)]
1+exp[a(x−b)] is the item response function (IRF) for the three-

parameter logistic model (3PL), and a, c, θ, θ0, and δ are fixed/constant parameters.

Determining θ0 such that f1(θ0) is at a maximum results in a classification bound

providing the best evidence that an examinee is above it. Therefore, we should take the

derivative of Equation (A.1) and set it equal to 0.
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df1(θ0)

dθ0
=

[
1

p(θ0 + δ)

] [
dp(θ0 + δ)

dθ0

]
−
[

1

p(θ0 − δ)

] [
dp(θ0 − δ)

dθ0

]
=

[
1

c+ (1− c) exp[a(θ0+δ−b)]
1+exp[a(θ0+δ−b)]

][
dp(θ0 + δ)

dθ0

]
−

[
1

c+ (1− c) exp[a(θ0−δ−b)]
1+exp[a(θ0−δ−b)]

] [
dp(θ0 − δ)

dθ0

]
(A.2)

But dp(x)
dx = (1−c)a exp[a(x−b)]

(1+exp[a(x−b)])2 , and after simplifying, we have

df1(θ0)

dθ0
=

[
(1− c)a

c+ exp[a(θ0 + δ − b)]

] [
exp[a(θ0 + δ − b)]

1 + exp[a(θ0 + δ − b)]

]
−
[

(1− c)a
c+ exp[a(θ0 − δ − b)]

] [
exp[a(θ0 − δ − b)]

1 + exp[a(θ0 − δ − b)]

]
.

(A.3)

To find the maximum of the log-likelihood ratio set Equation (A.3) equal to 0 and

solve for θ0.

[
exp[a(θ0 + δ − b)]
exp[a(θ0 − δ − b)]

] [
1 + exp[a(θ0 − δ − b)]
1 + exp[a(θ0 + δ − b)]

]
=
c+ exp[a(θ0 + δ − b)]
c+ exp[a(θ0 − δ − b)]

exp(2aδ)

[
1 + exp[a(θ0 − δ − b)]
1 + exp[a(θ0 + δ − b)]

]
=
c+ exp[a(θ0 + δ − b)]
c+ exp[a(θ0 − δ − b)]

. (A.4)

Let γ = exp(2aδ) in Equation (A.4) for simplicity. Then

γ(1+exp[a(θ0−δ−b)])(c+exp[a(θ0−δ−b)]) = (1+exp[a(θ0+δ−b)])(c+exp[a(θ0+δ−b)]).

(A.5)

The left side of Equation (A.5) becomes
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γ[(1 + exp[a(θ0 − δ − b)])(c+ exp[a(θ0 − δ − b)])

= γ
[
c+ c exp[a(θ0 − δ − b)] + exp[a(θ0 − δ − b)] + exp[a(2θ0 − 2δ − 2b)]

]
= cγ + cγ exp[aθ0] exp[−aδ] exp[−ab] + γ exp[aθ0] exp[−aδ] exp[−ab] + γ exp[a(2θ0 − 2δ − 2b)]

= c exp[2aδ] + c exp[aθ0] exp[aδ] exp[−ab] + exp[aθ0] exp[aδ] exp[−ab] + exp[2aθ0] exp[−2ab].

(A.6)

And the right side of Equation (A.5) becomes

(1 + exp[a(θ0 − δ − b)])(c+ exp[a(θ0 − δ − b)])

= c+ c exp[a(θ0 + δ − b)] + exp[a(θ0 + δ − b)] + exp[a(2θ0 + 2δ − 2b)]

= c+ c exp[aθ0] exp[aδ] exp[−ab] + exp[aθ0] exp[aδ] exp[−ab] + exp[2aθ0] exp[2aδ] exp[−2ab].

(A.7)

The middle two terms in Equations (A.6) and (A.7) are identical, so they cancel, and

Equation (A.5) simplifies to

c exp[2aδ] + exp[2aθ0] exp[−2ab] = c+ exp[2aθ0] exp[2aδ] exp[−2ab]

exp[2aθ0] exp[−2ab](1− exp[2aδ]) = c(1− exp[2aδ])

exp[2aθ0] exp[−2ab] = c

exp[2aθ0] =
c

exp[−2ab]
. (A.8)

Finally, taking logs of both sides and dividing, we find that the maximum of f(θ0) with

respect to θ0 is
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log(exp[2aθ0]) = log

(
c

exp[−2ab]

)
2aθ0 = log(c) + 2ab

θ̂0 =
log(c)

2a
+ b. (A.9)

Therefore, given one item with parameters a, b, and c, the classification bound that

maximizes the log-likelihood ratio (assuming a correct response) is θ0 = log(c)
2a + b. As

c→ 0, then log(c)→ −∞, so that the evidence for classification is a monotone function

of the classification bound, but as c→ 1, then the classification bound that maximizes

the log-likelihood ratio approaches θ0 = b.
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A.2 Maximum of the Expected Log-Likelihood Ratio with

respect to θ0

If we do not assume that an examinee responded correctly to an item, the appropriate

objective function is the expected log-likelihood ratio,

f2(θ0) = p(θ)
(

log[p(θ0 + δ)]− log[p(θ0 − δ)]
)

+ q(θ)
(

log[q(θ0 + δ)]− log[q(θ0 − δ)]
)
, (A.10)

where p(x) = c+ (1− c) exp[a(x−b)]
1+exp[a(x−b)] is the item response function (IRF) for the three-

parameter logistic model (3PL), q(x) = 1−p(x), and a, c, θ, θ0, and δ are fixed/constant

parameters. To find θ0 such that f2(θ0) is at a maximum, take the derivative of Equation

(A.10) and set it equal to 0. The derivative of Equation (A.10) can be written as

df2(θ0)

dθ0
= ap(θ)[pc(θ0 + δ)− pc(θ0 − δ)]− a[p1(θ0 + δ)− p1(θ0 − δ)] (A.11)

where p1(x) = exp[a(x−b)]
1+exp[a(x−b)] and pc(x) = exp[a(x−b)]

c+exp[a(x−b)] . After finding a common denom-

inator for the first half of the right side and the left half of the right side of Equation

(A.11), we have

df2(θ0)

dθ0
= ac

[
exp[a(θ0 + δ − b)]− exp[a(θ0 − δ − b)]

c2 + c exp[a(θ0 + δ − b)] + c exp[a(θ0 − δ − b)] + exp[2a(θ0 − b)]

]
− ap(θ)

[
exp[a(θ0 + δ − b)]− exp[a(θ0 − δ − b)]

1 + exp[a(θ0 + δ − b)] + exp[a(θ0 − δ − b)] + exp[2a(θ0 − b)]

]
. (A.12)

To find the maximum of the expected log-likelihood ratio, set Equation (A.12) equal

to 0 and solve for θ0. First note that we can divide out constants and simplify the
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derivative to

1

1 + exp[a(θ0 + δ − b)] + exp[a(θ0 − δ − b)] + exp[2a(θ0 − b)]

=
cp(θi)

c2 + c exp[a(θ0 + δ − b)] + c exp[a(θ0 − δ − b)] + exp[2a(θ0 − b)]
. (A.13)

Next, cross-multiply fractional denominators, which results in

cp(θi) + cp(θi) exp[a(θi + δ − b)] + cp(θi) exp[a(θi − δ − b)] + cp(θi) exp[2a(θ0 − b)]

= c2 + c exp[a(θ0 + δ − b)] + c exp[a(θ0 − δ − b)] + exp[2a(θ0 − b)]. (A.14)

After applying multiplicative properties of the exponential function, gathering terms

that contain θ0, and dividing all of the terms by cp(θi)− 1, we are left with

exp[2a(θ0−b)]+exp[a(θ0−b)] (exp[aδ] + exp[−aδ])
(
cp(θi)− c
cp(θi − 1)

)
=
c2 − cp(θi)
cp(θi)− 1

. (A.15)

Note that Equation (A.15) can be written as x2 + xγ = ψ, where x = exp[a(θ0 − b)],

ψ = c2−cp(θi)
cp(θi)−1 , and γ = (exp[aδ] + exp[−aδ])

(
cp(θi)−c
cp(θi−1)

)
. Applying the property that if

x2 + xγ = ψ, then x =
√
ψ + γ2

4 −
γ
2 to Equation (A.15), we have

exp[a(θ0 − b)] =

(
c2 − cp(θi)
cp(θi)− 1

+
1

4

[
(exp[aδ] + exp[−aδ])

(
cp(θi)− c
cp(θi)− 1

)]2)1/2

− 1

2
(exp[aδ] + exp[−aδ])

(
cp(θi)− c
cp(θi)− 1

)

=

(
c2 − cp(θi)
cp(θi)− 1

+ cosh2[aδ]

(
cp(θi)− c
cp(θi)− 1

)2
)1/2

− cosh[aδ]

(
cp(θi)− c
cp(θi)− 1

)
, (A.16)
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which uses the identity cosh(x) = exp(x)+exp(−x)
2 . Equation (A.16) can be simplified

further by expanding p(θi). There are ultimately three terms in Equation (A.16) that

include p(θi):

1. c2 − cp(θi)

2. cp(θi)− c

3. cp(θi)− 1

We can simplify each of those terms in turn. The first term simplifies to

c2 − cp(θi) = c2 − c
[
c+ (1− c)

(
exp[a(θi − b)]

1 + exp[a(θi − b)]

)]
= c(c− 1)

(
exp[a(θi − b)]

1 + exp[a(θi − b)]

)
. (A.17)

The next term simplifies to

cp(θi)− c = c[p(θi)− 1]

= c

[
c+ (1− c) exp[a(θi − b)]

1 + exp[a(θi − b)]
− 1

]
= c

[
c+ c exp[a(θi − b)]
1 + exp[a(θi − b)]

+
exp[a(θ − b)]− c exp[a(θi − b)]

1 + exp[a(θi − b)]
−
(

1 + exp[a(θi − b)]
1 + exp[a(θi − b)]

)]
=

c(c− 1)

1 + exp[a(θi − b)]
. (A.18)

And the final term simplifies to
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cp(θi)− 1 = c

[
c+ (1− c) exp[a(θi − b)]

1 + exp[a(θi − b)]

]
− 1

=
c2 + c2 exp[a(θi − b)]

1 + exp[a(θi − b)]
+
c exp[a(θi − b)]− c2 exp[a(θi − b)]

1 + exp[a(θi − b)]
−
(

1 + exp[a(θi − b)]
1 + exp[a(θi − b)]

)
=

(c2 − 1) + (c− 1) exp[a(θi − b)]
1 + exp[a(θi − b)]

. (A.19)

Replacing Equations (A.17), (A.18), and (A.19) in the fractions of Equation (A.16)

containing those terms, we have

c2 − cp(θi)
cp(θi)− 1

=
c(c− 1) exp[a(θi − b)]

(c2 − 1) + (c− 1) exp[a(θi − b)]

=
c(c− 1) exp[a(θi − b)]

(c− 1)(c+ 1) + (c− 1) exp[a(θi − b)]

=
c exp[a(θi − b)]

c+ 1 + exp[a(θi − b)]
(A.20)

and we have

cp(θi)− c
cp(θi)− 1

=
c(c− 1)

(c2 − 1) + (c− 1) exp[a(θi − b)]

=
c

c+ 1 + exp[a(θi − b)]
. (A.21)

After inserting Equations (A.20) and (A.21), Equation (A.16) simplifies to
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exp[a(θ0 − b)] =

(
c exp[a(θi − b)]

c+ 1 + exp[a(θi − b)]
+ cosh2[aδ]

[
c2

(c+ 1 + exp[a(θi − b)])2

])1/2

− cosh[aδ]

[
c

c+ 1 + exp[a(θi − b)]

]

=

[
c2(exp[a(θi − b)] + cosh2[aδ]) + c(exp[a(θi − b)] + exp[2a(θi − b)])

]1/2
− c cosh[aδ]

c+ 1 + exp[a(θi − b)]

(A.22)

Letting g =
[
c2(exp[a(θi − b)] + cosh2[aδ]) + c(exp[a(θi − b)] + exp[2a(θi − b)])

]1/2
and

h = c cosh[aδ], multiply the numerator and denominator of Equation (A.22) by g + h

to yield

exp[a(θ0 − b)] =
c exp[a(θi − b)][

c exp[a(θi − b)]{c+ 1 + exp[a(θi − b)]}+
(
c cosh[aδ]

)2]1/2
+
(
c cosh[aδ]

) . (A.23)

Finally, taking logs of both sides of Equation (A.23) and simplifying results in

θ̂0 =
log(c)

a
+ θi −

log

([
c exp[a(θi − b)]{c+ 1 + exp[a(θi − b)]}+

(
c cosh[aδ]

)2]1/2
+
(
c cosh[aδ]

))
a

=
log(c)

2a
+ θi −

log

([
exp[a(θi − b)]{c+ 1 + exp[a(θi − b)]}+

(
c1/2 cosh[aδ]

)2]1/2
+
(
c1/2 cosh[aδ]

))
a

.

(A.24)
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A.3 Maximum of the Expected Log-Likelihood Ratio with

respect to b

One might, instead, seek to determine the optimal item difficulty, b, that minimizes

(if θ < θ0) or maximizes (if θ > θ0) the expected log-likelihood ratio. The objective

function is the same, only now a function of b rather than θ0, namely

f2(b) = p(θ)
(

log[p(θ0 + δ)]− log[p(θ0 − δ)]
)

+ q(θ)
(

log[q(θ0 + δ)]− log[q(θ0 − δ)]
)
, (A.25)

where p(x) = c+ (1− c) exp[a(x−b)]
1+exp[a(x−b)] is the item response function (IRF) for the three-

parameter logistic model (3PL), q(x) = 1−p(x), and a, c, θ, θ0, and δ are fixed/constant

parameters. To find b such that f2(b) is at a minimum/maximum, take the derivative

of Equation (A.25) and set it equal to 0. Using the product rule, this derivative can

be broken down into two parts. First, note that holding p(θ) and q(θ) constant, the

derivative is identical to that from the previous derivation with an extra negative out

front due to the chain rule. Therefore, the derivative of Equation (A.25) (holding p(θ)

and q(θ) constant) can be written as

df2(b)

db

I

= −ap(θ)[pc(θ0 + δ)− pc(θ0 − δ)]− a[p1(θ0 + δ)− p1(θ0 − δ)], (A.26)

where p1(x) = exp[a(x−b)]
1+exp[a(x−b)] and pc(x) = exp[a(x−b)]

c+exp[a(x−b)] . Next, note that dp(θ)
db = −(1 −

c)ap1(θ)q1(θ) and dq(θ)
db = −dp(θ)

db = (1−c)ap1(θ)q1(θ), so that the derivative of Equation

(A.25) (holding {log[p(θ0 + δ)] − log[p(θ0 − δ)]} and {log[q(θ0 + δ)] − log[q(θ0 − δ)]}

constant) can be written as
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df2(b)

db

II

= −(1− c)ap1(θ)q1(θ) log

[
p(θ0 + δ)q(θ0 − δ)
q(θ0 + δ)p(θ − δ)

]
. (A.27)

The full derivative of Equation (A.25) with respect to b is simply the sum of Equations

(A.26) and (A.27), or

df2(b)

db
= −ap(θ)[pc(θ0 + δ)− pc(θ0 − δ)]− a[p1(θ0 + δ)− p1(θ0 − δ)]

− (1− c)ap1(θ)q1(θ) log

[
p(θ0 + δ)q(θ0 − δ)
q(θ0 + δ)p(θ − δ)

]
. (A.28)

To find the minimum/maximum of the log-likelihood ratio, set Equation (A.28) equal

to 0 and solve for b. Unfortunately, simplifying the resulting equation is impossible due

to the lower asymptote of p(θ) and p(θ0 + δ). Therefore, assume c = 0, noting that

c > 0 would result in a different b that minimizes/maximizes Equation (A.28). Setting

df2(b)
db = 0, c = 0, and dividing out the constant −a yields

0 = p(θ)[1− 1]−
[

exp[a(θ0 + δ − b)]
1 + exp[a(θ0 + δ − b)]

− exp[a(θ0 − δ − b)]
1 + exp[a(θ0 − δ − b)]

]

(1− 0)p1(θ)q1(θ) log


(

exp[a(θ0+δ−b)]
1+exp[a(θ0+δ−b)]

)(
1

1+exp[a(θ0−δ−b)]

)
(

exp[a(θ0−δ−b)]
1+exp[a(θ0−δ−b)]

)(
1

1+exp[a(θ0+δ−b)]

)
 ,

0 = −
[

exp[a(θ0 + δ − b)]− exp[a(θ0 − δ − b)]
1 + exp[a(θ0 + δ − b)] + exp[a(θ0 − δ − b)] + exp[2a(θ0 − b)]

]
+ p1(θ)q1(θ) log

[
exp[a(θ0 + δ − b)]
exp[a(θ0 − δ − b)]

]
,
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0 = −
[

exp[a(θ0 + δ − b)]− exp[a(θ0 − δ − b)]
1 + exp[a(θ0 + δ − b)] + exp[a(θ0 − δ − b)] + exp[2a(θ0 − b)]

]
+

2aδ exp[a(θ − b)](
1 + exp[a(θ − b)]

)2 ,
so that

exp[a(θ0 + δ − b)]− exp[a(θ0 − δ − b)]
1 + exp[a(θ0 + δ − b)] + exp[a(θ0 − δ − b)] + exp[2a(θ0 − b)]

=
2aδ exp[a(θ − b)](
1 + exp[a(θ − b)]

)2 . (A.29)

Next, we should cross-multiply denominators. After some manipulation, the left-hand

numerator multiplied by the right-hand denominator simplifies to

(
exp[a(θ0 + δ − b)]− exp[a(θ0 − δ − b)]

)(
1+ exp[a(θ − b)]

)2
=

exp[−1ab]
{

exp[a(θ0 + δ)]− exp[a(θ0 − δ)]
}

+ exp[−2ab]
{

2 exp[a(θ0 + θ + δ)]− 2 exp[a(θ0 + θ − δ)]
}

+ exp[−3ab]
{

exp[a(θ0 + 2θ + δ)]− exp[a(θ0 + 2θ − δ)]
}
,

(A.30)

whereas the right-hand numerator multiplied by the left-hand denominator simplifies to

2aδ exp[a(θ − b)]
(
1 + exp[a(θ0 + δ − b)]+ exp[a(θ0 − δ − b)] + exp[2a(θ0 − b)]

)
=

exp[−1ab]
{

2aδ exp[aθ]
}

+ exp[−2ab]
{

2aδ exp[a(θ0 + θ + δ)] + 2aδ exp[a(θ0 + θ − δ)]
}

+ exp[−3ab]
{

2aδ exp[a(2θ0 + θ)]
}
. (A.31)

Subtracting Equation (A.31) from Equation (A.30) and multiplying through by exp[3ab]

yields
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exp[2ab]
{

exp[a(θ0 + δ)]− exp[a(θ0 − δ)]− 2aδ exp[aθ]
}

+ exp[ab]
{

exp[a(θ0 + θ + δ)](2− 2aδ)− exp[a(θ0 + θ − δ)](2 + 2aδ)
}

+
{

exp[a(θ0 − 2θ + δ)]− exp[a(θ0 − 2θ − δ)]− 2aδ exp[a(2θ0 + θ)]
}

= 0 (A.32)

As in the previous derivation, Equation (A.33) can be written as x2ω + xγ + ψ = 0,

where x = exp[ab]. Therefore, x =
−γ±
√
γ2−4ωψ

2ω using the quadratic formula, so that

b̂ = log[x]/a minimizes/maximizes the expected log-likelihood ratio with respect to b.

Next, we should find each of −γ, 2ω, γ2, and 4ωψ. To simplify as much as possible,

note that 2 sinh(x) = exp(x)− exp(−x) and 2 cosh(x) = exp(x) + exp(−x). First,

−γ = exp[a(θ0 + θ − δ)](2 + 2aδ)− exp[a(θ0 + θ + δ)](2− 2aδ)

= 4aδ cosh[aδ] exp[a(θ0 + θ)]− 4 sinh[aδ] exp[a(θ0 + θ)]

= 4(aδ cosh[aδ]− sinh[aδ]) exp[a(θ0 + θ)]. (A.33)

Second,

2ω = 2
(

exp[a(θ0 + δ)]− exp[a(θ0 − δ)]− 2aδ exp[aθ]
)

= 4 sinh[aδ] exp[aθ0]− 4aδ exp[aθ]. (A.34)

Third,
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γ2 =
[
4(aδ cosh[aδ]− sinh[aδ]) exp[a(θ0 + θ)]

]2
= 16

[
(aδ)2 cosh2[aδ] + sinh2[aδ]− 2aδ sinh[aδ] cosh[aδ]

]
exp[2a(θ0 + θ)]

= 16
[
(aδ)2 cosh2[aδ]− (aδ) sinh[2aδ] + sinh2[aδ]

]
exp[2a(θ0 + θ)] (A.35)

using the property that 2 sinh(x) cosh(x) = sinh(2x). Fourth,

4ωψ = 4
(

exp[a(θ0 + δ)]− exp[a(θ0 − δ)]− 2aδ exp[aθ]
)

×
(

exp[a(θ0 − 2θ + δ)]− exp[a(θ0 − 2θ − δ)]− 2aδ exp[a(2θ0 + θ)]
)

= 4
(

exp[2a(θ0 + θ + δ)]− exp[2a(θ0 + θ)]− 2aδ exp[a(3θ0 + θ + δ)]

+ exp[2a(θ0 + θ − δ)]− exp[2a(θ0 + θ)] + 2aδ[a(3θ0 + θ − δ)]

− 2aδ exp[a(θ0 + 3θ + δ)] + 2aδ exp[a(θ0 + 3θ − δ)] + 4(aδ)2 exp[2a(θ0 + θ)]
)

= 16(aδ)2
(

exp[2a(θ0 + θ)]
)

− 16(aδ) sinh[aδ]
(

exp[a(3θ0 + θ)] + exp[a(θ0 + 3θ)]

+ 8(cosh[2aδ]− 1)
(

exp[2a(θ0 + θ)]
)
. (A.36)

Finally, subtract Equation (A.36) from Equation (A.35). Note that sinh2(x) = cosh(2x)−1
2 ,

so that the third term in Equations (A.35) and (A.36) cancel, and we are left with
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γ2 − 4ωψ = 16(aδ)2
{

(cosh2[aδ]− 1) exp[2a(θ0 + θ)]
}

− 16(aδ)
{

sinh(2aδ) exp[2a(θ0 + θ)]− sinh[aδ]
(

exp[a(3θ0 + θ)] + exp[a(θ0 + 3θ)]
)}
. (A.37)

Finding the difficulty parameter that maximizes the expected log-likelihood (Equa-

tion A.25) requires square-rooting Equation (A.37), adding and subtracting that square-

root from Equation (A.33), dividing the whole thing by Equation (A.34), taking the

natural log of the resulting computation, and dividing that natural log by a. Un-

fortunately, we are yet again at an impass. Simplifying Equation (A.37) so that the

square-root can be analytically determined is difficult if not intractable. However, one

generally picks δ to be a small constant. If δ = 0, then Equations (A.33), (A.34),

and (A.37) evaluate to 0, so that the actual value of b̂ at δ = 0 is undefined. We

can instead find limδ→0+ b̂, where b̂ = log

[
−γ±
√
γ2−4ωψ

2ω

]
/a. To start this derivation,

note that if x is small, then sinh(x) = exp(x)−exp(−x)
2 = x + x3

3! + x5

5! + · · · ≈ x and

cosh(x) = exp(x)+exp(−x)
2 = 1 + x2

2! + x4

4! + · · · ≈ 1. Therefore,

lim
δ→0+

(−γ) = lim
δ→0+

4(aδ cosh[aδ]− sinh[aδ]) exp[a(θ0 + θ)]

= lim
δ→0+

4(aδ − aδ) exp[a(θ0 + θ)]

= 0. (A.38)

Next



164

lim
δ→0+

(2ω) = lim
δ→0+

(
4 sinh[aδ] exp[aθ0]− 4aδ exp[aθ]

)
= lim

δ→0+

(
4aδ exp[aθ0]− 4aδ exp[aθ]

)
= lim

δ→0+
4aδ(exp[aθ0]− exp[aθ]). (A.39)

The final piece of the puzzle is limδ→0+(γ2 − 4ωψ). We can break down this limit into

two parts. The limit of the left side of Equation (A.37) as δ → 0+ is

lim
δ→0+

16(aδ)2
{

(cosh2[aδ]− 1) exp[2a(θ0 + θ)]
}

= lim
δ→0+

16(aδ)2
{

(1− 1) exp[2a(θ0 + θ)]
}

= 0. (A.40)

And the limit of the right side of Equation (A.37) as δ → 0+ is

lim
δ→0+

16(aδ)
{

sinh(2aδ) exp[2a(θ0 + θ)]− sinh[aδ]
(

exp[a(3θ0 + θ)] + exp[a(θ0 + 3θ)]
)}

= lim
δ→0+

16(aδ)
{

2aδ exp[2aθ0 + θ)]− aδ exp[a(3θ0 + θ)]− aδ exp[a(θ0 + 3θ)]
}

= lim
δ→0+

[
− 16(aδ)2

(
exp[a(1.5θ0 + .5θ)]− exp[a(.5θ0 + 1.5θ)]

)2]
(A.41)

Therefore, the limit of Equation (A.37) as δ → 0+ is

lim
δ→0+

(γ2 − 4ωψ) = 0− lim
δ→0+

[
− 16(aδ)2

(
exp[a(1.5θ0 + .5θ)]− exp[a(.5θ0 + 1.5θ)]

)2]
= lim

δ→0+
16(aδ)2

(
exp[a(1.5θ0 + .5θ)]− exp[a(.5θ0 + 1.5θ)]

)2
. (A.42)
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As long as θ0 6= θ, the square-root function at 16(aδ)2
(

exp[a(1.5θ0 + .5θ)]−exp[a(.5θ0 +

1.5θ)]
)2

is continuous with a two-sided limit. Therefore,

limδ→0+
√
γ2 − 4ωψ =

√
limδ→0+(γ2 − 4ωψ), so that

lim
δ→0+

−γ ±
√
γ2 − 4ωψ

2ω
= lim

δ→0+

0±
√

16(aδ)2
(

exp[a(1.5θ0 + .5θ)]− exp[a(.5θ0 + 1.5θ)]
)2

4aδ(exp[aθ0]− exp[aθ])

= lim
δ→0+

±4aδ
(

exp[a(1.5θ0 + .5θ)]− exp[a(.5θ0 + 1.5θ)]
)

4aδ(exp[aθ0]− exp[aθ])

=
±(exp[aθ0]− exp[aθ]) exp

[
a
(
θ0+θ

2

)]
(exp[aθ0]− exp[aθ])

= ± exp

[
a

(
θ0 + θ

2

)]
(A.43)

Finally, exp[x] > 0, so that log
(
− exp[x]

)
is undefined, but log

(
exp[x]

)
is well defined,

continuous, and has a limit, so that

lim
δ→0+

b̂ = lim
δ→0+

log

[
−γ ±

√
γ2 − 4ωψ

2ω

]
/a

= log

[
lim
δ→0+

(
−γ ±

√
γ2 − 4ωψ

2ω

)]
/a

= log

(
exp

[
a

(
θ0 + θ

2

)])
/a

=
θ0 + θ

2
. (A.44)

Therefore, items yielding optimal, expected log-likelihood ratios (for small δ) have dif-

ficulty parameters, b, midway between true ability, θ, and the classification bound, θ0.



Appendix B

Tables: Aggregate over

Distribution

The following tables indicate the group means, and the main effects, interactions, and

corresponding effect sizes from ANOVAs predicting mean test length, classification accu-

racy, and various loss functions from stopping rule, item selection algorithm, correlation

between dimensions, item bank, and classification bound function. Note that loss is

defined as the average of Loss = P × IW + J , where IW is an indicator function for

incorrect classification, J is the number of items given to an examinee, and P is the

penalty accrued for an incorrect decision.
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B.1 Group Means

Table B.1: The average percentage classified correctly, number of items administered,
and various loss values aggregated within each item selection algorithm assuming a
compensatory classification bound function.

Select Test Len. Class Acc. Loss (P = 100) Loss (P = 500) Loss(P = 1000)
D-FI 35.2 .936 41.6 67.1 99.0
L-FI 32.8 .938 39.1 63.9 94.9
L-ELR 32.5 .937 38.8 64.0 95.6
L-KL 33.4 .937 39.7 64.9 96.4
S-KL 31.8 .940 37.8 61.8 91.8

Table B.2: The average percentage classified correctly, number of items administered,
and various loss values aggregated within each item selection algorithm assuming a
non-compensatory classification bound function.

Select Test Len. Class Acc. Loss (P = 100) Loss (P = 500) Loss(P = 1000)
D-FI 43.5 .917 51.8 85.0 126.6
L-FI 36.0 .912 44.8 80.0 124.0
L-ELR 35.7 .902 45.5 84.9 134.1
L-KL 37.3 .903 47.0 85.7 134.1
S-KL 39.4 .911 48.2 83.7 128.0
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Table B.3: The average percentage classified correctly, number of items administered,
and various loss values aggregated within each stopping rule assuming a compensatory
classification bound function.

Stp. Rule Test Len. Class Acc. Loss (P = 100) Loss (P = 500) Loss(P = 1000)

P-SPRT: δ = .15 45.0 .946 50.4 72.2 99.5
P-SPRT: δ = .25 29.5 .938 35.7 60.4 91.3
C-SPRT: δ = .15 45.5 .947 50.8 72.1 98.6
C-SPRT: δ = .25 30.2 .940 36.2 60.1 90.1

M-SCSPRT: δ = .15 44.7 .947 50.0 71.1 95.3
M-SCSPRT: δ = .25 30.1 .941 36.0 59.8 89.5

M-GLR: δ = .15 29.7 .934 36.2 62.5 95.3
M-GLR: δ = .25 23.9 .926 31.3 61.1 98.3

BCR: α = .05 30.7 .937 36.9 62.0 93.4
BCR: α = .10 22.4 .920 30.4 62.2 102.0

Table B.4: The average percentage classified correctly, number of items adminis-
tered, and various loss values aggregated within each stopping rule assuming a non-
compensatory classification bound function.

Stp. Rule Test Len. Class Acc. Loss (P = 100) Loss (P = 500) Loss(P = 1000)

P-SPRT: δ = .15 40.9 .896 51.3 93.0 145.0
P-SPRT: δ = .25 25.8 .881 37.7 85.2 144.6
C-SPRT: δ = .15 55.9 .923 63.6 94.2 132.6
C-SPRT: δ = .25 40.0 .917 48.2 81.3 122.6

M-SCSPRT: δ = .15 49.1 .905 58.6 96.5 143.8
M-SCSPRT: δ = .25 36.4 .902 46.3 85.5 134.6

M-GLR: δ = .15 39.2 .917 47.5 80.5 121.8
M-GLR: δ = .25 36.3 .915 44.8 78.9 121.6

BCR: α = .05 34.3 .920 42.3 74.1 114.0
BCR: α = .10 25.8 .913 34.5 69.4 113.0



169

Table B.5: The average percentage classified correctly, number of items administered,
and various loss values aggregated within each item bank by dimension correlation
assuming a compensatory classification bound function.

Between Multidimensional Item Bank

Select Test Len. Class Acc. Loss (P = 100) Loss (P = 500) Loss(P = 1000)

ρ = .00 40.5 .925 48.0 78.1 115.7
ρ = .33 37.8 .932 44.6 71.9 106.0
ρ = .67 35.5 .938 41.7 66.4 97.2

Within Multidimensional Item Bank

Select Test Len. Class Acc. Loss (P = 100) Loss (P = 500) Loss(P = 1000)

ρ = .00 30.3 .937 36.6 61.7 93.1
ρ = .33 28.2 .944 33.9 56.3 84.5
ρ = .67 26.6 .950 31.6 51.7 76.9

Table B.6: The average percentage classified correctly, number of items administered,
and various loss values aggregated within each item bank by dimension correlation
assuming a non-compensatory classification bound function.

Between Multidimensional Item Bank

Select Test Len. Class Acc. Loss (P = 100) Loss (P = 500) Loss(P = 1000)

ρ = .00 32.8 .906 42.2 79.7 126.6
ρ = .33 32.6 .913 41.3 76.1 119.6
ρ = .67 32.9 .916 41.4 75.1 117.3

Within Multidimensional Item Bank

Select Test Len. Class Acc. Loss (P = 100) Loss (P = 500) Loss(P = 1000)

ρ = .00 44.7 .904 54.3 92.8 141.0
ρ = .33 44.0 .908 53.2 90.2 135.4
ρ = .67 43.2 .908 52.4 89.2 135.3
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Table B.7: The average percentage classified correctly, number of items administered,
and various loss values aggregated within each dimension correlation by item selection
algorithm assuming a compensatory classification bound function.

Cor(θ1, θ2) = .00

Select Test Len. Class Acc. Loss (P = 100) Loss (P = 500) Loss(P = 1000)

D-FI 37.7 .929 44.8 73.2 108.7
L-FI 35.0 .931 41.8 69.2 103.5
L-ELR 34.8 .931 41.7 69.2 103.7
L-KL 35.5 .930 42.5 70.4 105.3
S-KL 34.0 .933 40.6 67.4 100.8

Cor(θ1, θ2) = .33

Select Test Len. Class Acc. Loss (P = 100) Loss (P = 500) Loss(P = 1000)

D-FI 35.1 .936 41.5 67.1 99.1
L-FI 32.7 .938 38.9 63.8 94.9
L-ELR 32.3 .937 38.6 64.0 95.8
L-KL 33.3 .938 39.4 64.1 94.9
S-KL 31.7 .940 37.7 61.5 91.3

Cor(θ1, θ2) = .67

Select Test Len. Class Acc. Loss (P = 100) Loss (P = 500) Loss(P = 1000)

D-FI 32.7 .943 38.3 61.0 89.3
L-FI 30.9 .944 36.4 58.6 86.4
L-ELR 30.4 .943 36.1 58.9 87.3
L-KL 31.4 .942 37.1 60.2 89.0
S-KL 29.8 .947 35.2 56.6 83.3
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Table B.8: The average percentage classified correctly, number of items administered,
and various loss values aggregated within each dimension correlation by item selection
algorithm assuming a non-compensatory classification bound function.

Cor(θ1, θ2) = .00

Select Test Len. Class Acc. Loss (P = 100) Loss (P = 500) Loss(P = 1000)

D-FI 44.2 .915 52.7 86.6 129.0
L-FI 36.4 .908 45.6 82.5 128.6
L-ELR 36.0 .896 46.4 88.0 140.0
L-KL 37.8 .898 48.0 89.0 140.2
S-KL 39.4 .908 48.6 85.2 131.1

Cor(θ1, θ2) = .33

Select Test Len. Class Acc. Loss (P = 100) Loss (P = 500) Loss(P = 1000)

D-FI 43.6 .919 51.8 84.3 124.9
L-FI 35.8 .913 44.5 79.3 122.7
L-ELR 35.6 .903 45.3 84.3 133.0
L-KL 37.3 .904 46.8 85.0 132.9
S-KL 39.2 .913 48.0 82.9 126.5

Cor(θ1, θ2) = .67

Select Test Len. Class Acc. Loss (P = 100) Loss (P = 500) Loss(P = 1000)

D-FI 42.8 .917 51.1 84.3 125.8
L-FI 35.8 .915 44.3 78.2 120.6
L-ELR 35.3 .906 44.7 82.4 129.4
L-KL 37.0 .908 46.2 83.1 129.1
S-KL 39.5 .913 48.2 83.0 126.5
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Table B.9: The average percentage classified correctly, number of items administered,
and various loss values aggregated within each dimension correlation by stopping rule
assuming a compensatory classification bound function.

Cor(θ1, θ2) = .00

Stp. Rule Test Len. Class Acc. Loss (P = 100) Loss (P = 500) Loss(P = 1000)

P-SPRT: δ = .15 47.8 .940 53.8 77.9 108.1
P-SPRT: δ = .25 31.3 .932 38.1 65.4 99.6
C-SPRT: δ = .15 48.2 .941 54.1 77.5 106.8
C-SPRT: δ = .25 32.0 .933 38.6 65.3 98.6

M-SCSPRT: δ = .15 47.4 .942 53.2 76.3 105.1
M-SCSPRT: δ = .25 31.8 .932 38.6 65.9 99.9

M-GLR: δ = .15 31.8 .927 39.1 68.3 104.7
M-GLR: δ = .25 25.4 .918 33.6 66.3 107.2

BCR: α = .05 33.7 .931 40.7 68.4 103.1
BCR: α = .10 24.5 .914 33.1 67.7 110.8

Cor(θ1, θ2) = .33

Stp. Rule Test Len. Class Acc. Loss (P = 100) Loss (P = 500) Loss(P = 1000)

P-SPRT: δ = .15 44.9 .945 50.4 72.3 99.7
P-SPRT: δ = .25 29.4 .939 35.5 60.0 90.7
C-SPRT: δ = .15 45.4 .947 50.7 72.1 98.8
C-SPRT: δ = .25 30.0 .940 36.0 59.9 89.8

M-SCSPRT: δ = .15 44.5 .946 49.9 71.4 98.3
M-SCSPRT: δ = .25 39.9 .943 35.6 58.5 87.1

M-GLR: δ = .15 29.6 .935 36.1 36.1 94.4
M-GLR: δ = .25 23.8 .925 31.3 31.3 98.6

BCR: α = .05 30.3 .937 36.6 61.6 92.9
BCR: α = .10 22.3 .920 30.2 62.1 101.9

Cor(θ1, θ2) = .67

Stp. Rule Test Len. Class Acc. Loss (P = 100) Loss (P = 500) Loss(P = 1000)

P-SPRT: δ = .15 42.2 .952 47.0 66.4 90.6
P-SPRT: δ = .25 27.8 .944 33.4 55.7 83.7
C-SPRT: δ = .15 42.9 .953 47.7 47.7 90.1
C-SPRT: δ = .25 28.5 .946 33.8 33.8 82.0

M-SCSPRT: δ = .15 42.1 .953 46.8 46.8 89.3
M-SCSPRT: δ = .25 28.4 .947 33.7 33.7 81.6

M-GLR: δ = .15 27.6 .941 33.5 33.5 86.7
M-GLR: δ = .25 22.4 .933 29.1 29.1 89.1

BCR: α = .05 27.9 .944 33.6 33.6 84.3
BCR: α = .10 20.5 .927 27.8 27.8 93.3
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Table B.10: The average percentage classified correctly, number of items administered,
and various loss values aggregated within each dimension correlation by stopping rule
assuming a non-compensatory classification bound function.

Cor(θ1, θ2) = .00

Stp. Rule Test Len. Class Acc. Loss (P = 100) Loss (P = 500) Loss(P = 1000)

P-SPRT: δ = .15 41.3 .886 52.7 98.2 155.1
P-SPRT: δ = .25 26.3 .872 39.1 90.5 154.7
C-SPRT: δ = .15 56.0 .922 63.8 95.2 134.5
C-SPRT: δ = .25 39.9 .914 48.5 82.8 125.6

M-SCSPRT: δ = .15 49.6 .902 59.4 98.6 147.6
M-SCSPRT: δ = .25 36.5 .900 46.5 86.4 136.2

M-GLR: δ = .15 39.3 .914 47.9 82.2 125.1
M-GLR: δ = .25 36.5 .909 45.5 81.8 127.2

BCR: α = .05 35.5 .918 43.6 76.3 117.1
BCR: α = .10 26.8 .912 35.6 70.7 114.6

Cor(θ1, θ2) = .33

Stp. Rule Test Len. Class Acc. Loss (P = 100) Loss (P = 500) Loss(P = 1000)

P-SPRT: δ = .15 41.0 .898 51.2 92.2 143.3
P-SPRT: δ = .25 25.9 .884 37.5 84.0 142.1
C-SPRT: δ = .15 55.7 .925 63.2 63.2 131.1
C-SPRT: δ = .25 39.8 .918 48.0 48.0 122.1

M-SCSPRT: δ = .15 48.9 .908 58.1 58.1 141.2
M-SCSPRT: δ = .25 36.2 .902 46.1 46.1 134.7

M-GLR: δ = .15 38.9 .920 46.9 46.9 119.3
M-GLR: δ = .25 36.0 .917 44.3 44.3 119.1

BCR: α = .05 34.6 .920 42.5 42.5 114.1
BCR: α = .10 26.0 .913 34.7 34.7 113.1

Cor(θ1, θ2) = .67

Stp. Rule Test Len. Class Acc. Loss (P = 100) Loss (P = 500) Loss(P = 1000)

P-SPRT: δ = .15 40.5 .904 50.1 88.5 136.6
P-SPRT: δ = .25 25.2 .888 36.4 81.2 137.1
C-SPRT: δ = .15 56.0 .924 63.6 94.1 132.2
C-SPRT: δ = .25 40.2 .920 48.2 80.2 120.2

M-SCSPRT: δ = .15 49.0 .906 58.3 95.8 142.6
M-SCSPRT: δ = .25 36.6 .904 46.2 84.8 132.9

M-GLR: δ = .15 39.4 .918 47.6 80.3 121.1
M-GLR: δ = .25 36.3 .918 44.5 77.4 118.4

BCR: α = .05 32.9 .922 40.7 71.8 110.7
BCR: α = .10 24.7 .913 33.3 67.9 111.2
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Table B.11: The average percentage classified correctly, number of items administered,
and various loss values aggregated within each item bank by item selection algorithm
assuming a compensatory classification bound function.

Between Multidimensional Item Bank

Select Test Len. Class Acc. Loss (P = 100) Loss (P = 500) Loss(P = 1000)

D-FI 38.3 .932 45.1 72.1 105.8
L-FI 38.2 .932 45.0 72.2 106.3
L-ELR 37.6 .930 44.7 72.8 108.0
L-KL 38.8 .931 45.7 73.5 108.3
S-KL 36.8 .934 43.4 70.0 103.1

Within Multidimensional Item Bank

Select Test Len. Class Acc. Loss (P = 100) Loss (P = 500) Loss(P = 1000)

D-FI 32.0 .940 38.1 62.1 92.3
L-FI 27.5 .944 33.1 55.6 83.6
L-ELR 27.4 .944 33.0 55.3 83.2
L-KL 28.0 .944 33.7 56.3 84.5
S-KL 26.9 .946 32.2 53.7 80.5
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Table B.12: The average percentage classified correctly, number of items administered,
and various loss values aggregated within each item bank by item selection algorithm
assuming a non-compensatory classification bound function.

Between Multidimensional Item Bank

Select Test Len. Class Acc. Loss (P = 100) Loss (P = 500) Loss(P = 1000)

D-FI 40.3 .923 48.1 79.0 117.8
L-FI 30.9 .910 39.9 76.0 121.1
L-ELR 29.5 .896 39.9 81.6 133.6
L-KL 30.8 .909 39.9 76.1 121.5
S-KL 32.5 .921 40.4 72.2 111.9

Within Multidimensional Item Bank

Select Test Len. Class Acc. Loss (P = 100) Loss (P = 500) Loss(P = 1000)

D-FI 46.8 .911 55.6 91.1 135.4
L-FI 41.1 .914 49.7 84.0 126.9
L-ELR 41.8 .907 51.1 88.2 134.7
L-KL 43.9 .897 54.2 95.3 146.6
S-KL 46.3 .902 56.1 95.2 144.1
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Table B.13: The average percentage classified correctly, number of items administered,
and various loss values aggregated within each item bank by stopping rule assuming a
compensatory classification bound function.

Between Multidimensional Item Bank

Stp. Rule Test Len. Class Acc. Loss (P = 100) Loss (P = 500) Loss(P = 1000)

P-SPRT: δ = .15 52.4 .939 58.5 83.0 113.5
P-SPRT: δ = .25 35.2 .935 41.7 67.6 100.1
C-SPRT: δ = .15 52.5 .942 58.3 81.7 110.8
C-SPRT: δ = .25 35.4 .937 41.8 67.1 98.7

M-SCSPRT: δ = .15 51.2 .942 57.0 80.4 109.6
M-SCSPRT: δ = .25 35.3 .936 41.7 67.1 98.9

M-GLR: δ = .15 32.6 .926 40.0 69.6 106.6
M-GLR: δ = .25 26.9 .918 35.1 68.1 109.3

BCR: α = .05 33.6 .931 40.5 68.2 102.8
BCR: α = .10 24.4 .912 33.2 68.5 112.5

Within Multidimensional Item Bank

Stp. Rule Test Len. Class Acc. Loss (P = 100) Loss (P = 500) Loss(P = 1000)

P-SPRT: δ = .15 37.5 .952 42.3 61.4 85.4
P-SPRT: δ = .25 23.8 .941 29.7 52.4 82.5
C-SPRT: δ = .15 38.6 .952 43.3 62.4 86.3
C-SPRT: δ = .25 24.9 .943 30.6 53.2 81.6

M-SCSPRT: δ = .15 38.2 .953 42.9 61.9 85.6
M-SCSPRT: δ = .25 24.8 .945 30.3 52.4 80.1

M-GLR: δ = .15 26.7 .943 32.5 55.3 83.9
M-GLR: δ = .25 20.9 .934 27.5 54.1 87.3

BCR: α = .05 27.7 .944 33.4 55.9 84.1
BCR: α = .10 20.5 .929 27.6 56.0 91.5
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Table B.14: The average percentage classified correctly, number of items administered,
and various loss values aggregated within each item bank by stopping rule assuming a
non-compensatory classification bound function.

Between Multidimensional Item Bank

Stp. Rule Test Len. Class Acc. Loss (P = 100) Loss (P = 500) Loss(P = 1000)

P-SPRT: δ = .15 41.6 .892 52.4 95.7 149.8
P-SPRT: δ = .25 27.1 .883 38.8 85.7 144.2
C-SPRT: δ = .15 45.6 .934 52.1 78.4 111.3
C-SPRT: δ = .25 29.9 .923 37.6 68.3 106.8

M-SCSPRT: δ = .15 35.7 .898 45.9 86.7 137.7
M-SCSPRT: δ = .25 24.1 .892 34.9 78.1 132.1

M-GLR: δ = .15 34.4 .926 41.8 71.4 108.4
M-GLR: δ = .25 31.8 .922 39.7 71.0 110.2

BCR: α = .05 33.1 .929 40.2 68.7 104.4
BCR: α = .10 24.7 .918 32.9 65.8 106.9

Within Multidimensional Item Bank

Stp. Rule Test Len. Class Acc. Loss (P = 100) Loss (P = 500) Loss(P = 1000)

P-SPRT: δ = .15 40.3 .900 50.2 90.2 140.2
P-SPRT: δ = .25 24.5 .890 36.6 84.8 145.0
C-SPRT: δ = .15 66.2 .912 75.0 110.1 153.9
C-SPRT: δ = .25 50.0 .912 58.9 94.3 138.5

M-SCSPRT: δ = .15 62.5 .913 71.3 106.2 149.9
M-SCSPRT: δ = .25 48.8 .912 57.6 93.0 137.1

M-GLR: δ = .15 44.1 .909 53.2 89.7 135.3
M-GLR: δ = .25 40.7 .908 49.9 86.8 132.9

BCR: α = .05 35.5 .912 44.3 79.6 123.6
BCR: α = .10 27.0 .908 36.2 73.0 119.0
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Table B.15: The average percentage classified correctly and number of items adminis-
tered within each item selection algorithm by stopping rule assuming a compensatory
classification bound function and a between multidimensional item bank.

Average Test Length

Stop↓ Select→ D-FI L-FI L-ELR L-KL S-KL

P-SPRT: δ = .15 52.8 52.8 51.8 53.1 51.5
P-SPRT: δ = .25 35.6 35.7 34.6 35.6 34.4
C-SPRT: δ = .15 53.2 52.8 51.3 53.9 51.3
C-SPRT: δ = .25 35.6 35.8 35.0 36.5 34.2

M-SCSPRT: δ = .15 51.7 51.4 50.2 52.5 50.1
M-SCSPRT: δ = .25 35.5 35.4 35.1 36.5 34.1

M-GLR: δ = .15 33.3 33.3 31.9 33.3 31.1
M-GLR: δ = .25 27.3 27.2 26.9 27.7 25.4

BCR: α = .05 33.6 33.4 34.3 34.3 32.4
BCR: α = .10 24.4 24.2 25.2 24.4 23.7

Classification Accuracy

Stop↓ Select→ D-FI L-FI L-ELR L-KL S-KL

P-SPRT: δ = .15 .938 .941 .938 .936 .941
P-SPRT: δ = .25 .938 .935 .931 .934 .938
C-SPRT: δ = .15 .939 .941 .942 .941 .944
C-SPRT: δ = .25 .936 .935 .935 .938 .940

M-SCSPRT: δ = .15 .942 .941 .940 .943 .942
M-SCSPRT: δ = .25 .939 .935 .936 .934 .938

M-GLR: δ = .15 .932 .927 .920 .923 .928
M-GLR: δ = .25 .919 .922 .911 .916 .920

BCR: α = .05 .932 .931 .929 .929 .932
BCR: α = .10 .909 .911 .914 .912 .913
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Table B.16: Various loss values within each item selection algorithm by stopping rule
assuming a compensatory classification bound function and a between multidimensional
item bank.

Loss (P = 100)

Stop↓ Select→ D-FI L-FI L-ELR L-KL S-KL

P-SPRT: δ = .15 59.0 58.7 58.0 59.5 57.4
P-SPRT: δ = .25 41.8 42.2 41.5 42.2 40.6
C-SPRT: δ = .15 59.2 58.7 57.0 59.8 56.9
C-SPRT: δ = .25 42.0 42.4 41.5 42.7 40.3

M-SCSPRT: δ = .15 57.5 57.4 56.1 58.3 55.9
M-SCSPRT: δ = .25 41.6 42.0 41.5 43.1 40.3

M-GLR: δ = .15 40.2 40.5 39.9 41.0 38.3
M-GLR: δ = .25 35.4 35.0 35.7 36.2 33.4

BCR: α = .05 40.4 40.2 41.4 41.4 39.1
BCR: α = .10 33.6 33.1 33.8 33.1 32.3

Loss (P = 500)

Stop↓ Select→ D-FI L-FI L-ELR L-KL S-KL

P-SPRT: δ = .15 83.7 82.1 82.9 85.1 81.1
P-SPRT: δ = .25 66.7 68.1 69.3 68.7 65.4
C-SPRT: δ = .15 83.5 82.2 80.2 83.3 79.2
C-SPRT: δ = .25 67.4 68.2 67.5 67.7 64.4

M-SCSPRT: δ = .15 80.5 81.1 79.9 81.2 79.0
M-SCSPRT: δ = .25 66.0 68.0 67.0 69.6 65.0

M-GLR: δ = .15 67.6 69.6 71.9 71.8 67.1
M-GLR: δ = .25 67.7 66.4 71.1 69.9 65.3

BCR: α = .05 67.5 67.7 69.9 69.7 66.1
BCR: α = .10 70.1 68.8 68.2 68.2 67.0

Loss (P = 1000)

Stop↓ Select→ D-FI L-FI L-ELR L-KL S-KL

P-SPRT: δ = .15 114.5 111.4 114.0 117.1 110.7
P-SPRT: δ = .25 97.9 100.5 104.0 101.9 96.3
C-SPRT: δ = .15 113.8 111.5 109.1 112.6 107.0
C-SPRT: δ = .25 99.2 100.7 100.0 98.8 94.6

M-SCSPRT: δ = .15 109.4 110.8 109.7 109.9 107.9
M-SCSPRT: δ = .25 96.5 100.6 98.8 102.8 95.8

M-GLR: δ = .15 101.8 106.0 111.9 110.3 103.2
M-GLR: δ = .25 108.1 105.5 115.4 112.1 105.3

BCR: α = .05 101.3 102.1 105.4 105.2 99.9
BCR: α = .10 115.8 113.4 111.2 112.0 110.3



180

Table B.17: The average percentage classified correctly and number of items adminis-
tered within each item selection algorithm by stopping rule assuming a compensatory
classification bound function and a within multidimensional item bank.

Average Test Length

Stop↓ Select→ D-FI L-FI L-ELR L-KL S-KL

P-SPRT: δ = .15 43.2 36.6 35.5 36.5 35.7
P-SPRT: δ = .25 28.0 23.2 22.8 22.9 22.1
C-SPRT: δ = .15 44.0 37.2 36.5 38.3 36.6
C-SPRT: δ = .25 28.9 23.7 23.8 24.6 23.4

M-SCSPRT: δ = .15 43.4 37.0 36.0 38.2 36.3
M-SCSPRT: δ = .25 28.9 23.6 23.6 24.4 23.5

M-GLR: δ = .15 29.2 26.1 26.2 27.0 25.2
M-GLR: δ = .25 23.1 20.3 20.3 20.9 19.7

BCR: α = .05 29.8 27.0 28.0 27.4 26.4
BCR: α = .10 21.7 20.0 21.0 20.0 19.7

Classification Accuracy

Stop↓ Select→ D-FI L-FI L-ELR L-KL S-KL

P-SPRT: δ = .15 .953 .952 .952 .951 .953
P-SPRT: δ = .25 .941 .941 .937 .941 .947
C-SPRT: δ = .15 .949 .954 .952 .955 .952
C-SPRT: δ = .25 .939 .943 .946 .945 .944

M-SCSPRT: δ = .15 .951 .952 .953 .953 .955
M-SCSPRT: δ = .25 .943 .947 .944 .942 .947

M-GLR: δ = .15 .937 .944 .944 .943 .947
M-GLR: δ = .25 .926 .933 .936 .932 .940

BCR: α = .05 .939 .942 .947 .043 .947
BCR: α = .10 .920 .930 .931 .931 .932
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Table B.18: Various loss values within each item selection algorithm by stopping rule
assuming a compensatory classification bound function and a within multidimensional
item bank.

Loss (P = 100)

Stop↓ Select→ D-FI L-FI L-ELR L-KL S-KL

P-SPRT: δ = .15 47.9 41.4 40.3 41.4 40.4
P-SPRT: δ = .25 33.9 29.1 29.1 28.7 27.4
C-SPRT: δ = .15 49.1 41.8 41.4 42.9 41.5
C-SPRT: δ = .25 35.1 29.4 29.2 30.1 29.0

M-SCSPRT: δ = .15 48.4 41.8 40.7 42.9 40.8
M-SCSPRT: δ = .25 34.6 28.9 29.2 30.1 28.8

M-GLR: δ = .15 35.6 31.7 31.8 32.8 30.5
M-GLR: δ = .25 30.5 27.0 26.7 27.7 25.7

BCR: α = .05 35.9 32.8 33.3 33.1 31.7
BCR: α = .10 29.7 27.0 27.9 26.9 26.5

Loss (P = 500)

Stop↓ Select→ D-FI L-FI L-ELR L-KL S-KL

P-SPRT: δ = .15 66.7 60.7 59.6 60.9 59.3
P-SPRT: δ = .25 57.5 52.9 54.4 52.2 48.8
C-SPRT: δ = .15 69.4 60.3 60.6 61.0 60.8
C-SPRT: δ = .25 59.6 52.1 50.7 52.3 51.4

M-SCSPRT: δ = .15 68.2 60.9 59.7 61.9 58.9
M-SCSPRT: δ = .25 57.4 50.1 51.6 53.3 49.8

M-GLR: δ = .15 60.9 54.0 54.2 55.8 51.8
M-GLR: δ = .25 60.0 53.6 52.4 54.8 49.6

BCR: α = .05 60.1 56.0 54.5 56.0 53.0
BCR: α = .10 61.6 54.9 55.4 54.5 53.6

Loss (P = 1000)

Stop↓ Select→ D-FI L-FI L-ELR L-KL S-KL

P-SPRT: δ = .15 90.2 84.7 83.7 85.4 82.9
P-SPRT: δ = .25 87.0 82.6 85.9 81.6 75.5
C-SPRT: δ = .15 94.9 83.4 84.7 83.6 85.0
C-SPRT: δ = .25 90.3 80.5 77.6 80.0 79.5

M-SCSPRT: δ = .15 92.9 84.8 83.4 85.6 81.4
M-SCSPRT: δ = .25 85.9 76.6 79.6 82.2 76.1

M-GLR: δ = .15 92.6 81.9 82.2 84.5 78.3
M-GLR: δ = .25 96.9 86.9 84.4 88.8 79.6

BCR: α = .05 90.5 84.9 81.0 84.5 79.6
BCR: α = .10 101.5 89.8 89.7 89.0 87.5
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Table B.19: The average percentage classified correctly and number of items ad-
ministered within each item selection algorithm by stopping rule assuming a non-
compensatory classification bound function and a between multidimensional item bank.

Average Test Length

Stop↓ Select→ D-FI L-FI L-ELR L-KL S-KL

P-SPRT: δ = .15 55.5 35.1 39.0 35.3 43.2
P-SPRT: δ = .25 38.1 21.9 26.8 22.0 26.8
C-SPRT: δ = .15 58.9 40.4 41.9 40.5 46.0
C-SPRT: δ = .25 39.6 25.1 28.4 24.8 31.4

M-SCSPRT: δ = .15 45.2 40.0 19.8 39.7 34.0
M-SCSPRT: δ = .25 32.7 24.9 15.3 25.0 22.6

M-GLR: δ = .15 38.5 33.0 33.7 33.1 33.6
M-GLR: δ = .25 33.7 31.2 31.7 30.9 31.6

BCR: α = .05 35.1 32.6 33.5 32.2 32.0
BCR: α = .10 25.9 24.5 25.3 24.4 23.4

Classification Accuracy

Stop↓ Select→ D-FI L-FI L-ELR L-KL S-KL

P-SPRT: δ = .15 .937 .855 .878 .856 .934
P-SPRT: δ = .25 .930 .947 .868 .849 .919
C-SPRT: δ = .15 .936 .934 .935 .931 .935
C-SPRT: δ = .25 .932 .919 .926 .917 .922

M-SCSPRT: δ = .15 .900 .931 .826 .932 .902
M-SCSPRT: δ = .25 .898 .919 .828 .919 .897

M-GLR: δ = .15 .931 .926 .929 .921 .924
M-GLR: δ = .25 .923 .924 .921 .919 .921

BCR: α = .05 .925 .930 .929 .932 .928
BCR: α = .10 .914 .915 .919 .917 .924
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Table B.20: Various loss values within each item selection algorithm by stopping rule
assuming a non-compensatory classification bound function and a between multidimen-
sional item bank.

Loss (P = 100)

Stop↓ Select→ D-FI L-FI L-ELR L-KL S-KL

P-SPRT: δ = .15 61.8 49.6 51.2 49.7 49.8
P-SPRT: δ = .25 45.1 37.2 40.0 37.0 34.9
C-SPRT: δ = .15 65.4 47.0 48.4 47.4 52.5
C-SPRT: δ = .25 46.5 33.2 35.8 33.1 39.3

M-SCSPRT: δ = .15 55.1 46.9 37.2 46.5 43.8
M-SCSPRT: δ = .25 42.9 33.1 32.5 33.1 32.8

M-GLR: δ = .15 45.4 40.4 40.8 41.0 41.2
M-GLR: δ = .25 41.4 38.9 39.6 39.0 39.5

BCR: α = .05 42.6 39.6 40.6 39.1 39.2
BCR: α = .10 34.5 33.0 33.4 32.6 31.0

Loss (P = 500)

Stop↓ Select→ D-FI L-FI L-ELR L-KL S-KL

P-SPRT: δ = .15 87.2 107.8 99.8 107.4 76.4
P-SPRT: δ = .25 72.9 98.3 92.9 97.3 67.1
C-SPRT: δ = .15 91.1 73.4 74.3 75.1 78.4
C-SPRT: δ = .25 73.8 65.7 65.4 66.1 70.6

M-SCSPRT: δ = .15 95.0 74.7 106.9 73.8 83.2
M-SCSPRT: δ = .25 83.8 65.7 101.5 65.6 73.9

M-GLR: δ = .15 72.8 70.2 69.3 72.7 71.8
M-GLR: δ = .25 72.3 69.4 71.0 71.4 71.0

BCR: α = .05 72.4 67.7 68.9 66.4 68.1
BCR: α = .10 69.0 66.8 65.8 65.8 61.5

Loss (P = 1000)

Stop↓ Select→ D-FI L-FI L-ELR L-KL S-KL

P-SPRT: δ = .15 118.9 180.5 160.5 179.4 109.6
P-SPRT: δ = .25 107.7 174.6 159.0 172.6 107.4
C-SPRT: δ = .15 123.2 106.3 106.6 109.6 110.8
C-SPRT: δ = .25 108.0 106.3 102.4 107.4 109.7

M-SCSPRT: δ = .15 144.7 109.4 194.0 107.8 132.3
M-SCSPRT: δ = .25 134.9 106.4 187.8 106.2 125.2

M-GLR: δ = .15 107.2 107.5 104.9 112.2 110.0
M-GLR: δ = .25 110.9 107.6 110.3 111.8 110.3

BCR: α = .05 109.7 102.8 104.3 100.7 104.3
BCR: α = .10 112.2 109.1 106.4 107.3 99.7
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Table B.21: The average percentage classified correctly and number of items ad-
ministered within each item selection algorithm by stopping rule assuming a non-
compensatory classification bound function and a within multidimensional item bank.

Average Test Length

Stop↓ Select→ D-FI L-FI L-ELR L-KL S-KL

P-SPRT: δ = .15 51.7 41.5 36.7 34.9 36.5
P-SPRT: δ = .25 31.3 23.8 23.2 21.4 22.8
C-SPRT: δ = .15 69.0 62.4 62.8 66.3 70.7
C-SPRT: δ = .25 51.2 43.7 46.2 51.4 57.6

M-SCSPRT: δ = .15 65.8 56.2 59.3 63.7 67.8
M-SCSPRT: δ = .25 49.9 42.2 44.9 50.6 56.4

M-GLR: δ = .15 44.1 41.3 42.3 45.4 47.4
M-GLR: δ = .25 40.2 37.7 38.8 42.6 44.3

BCR: α = .05 36.7 35.3 36.3 35.4 34.0
BCR: α = .10 27.6 27.3 27.4 27.4 25.3

Classification Accuracy

Stop↓ Select→ D-FI L-FI L-ELR L-KL S-KL

P-SPRT: δ = .15 .910 .909 .893 .889 .899
P-SPRT: δ = .25 .891 .885 .866 .872 .884
C-SPRT: δ = .15 .915 .921 .921 .901 .904
C-SPRT: δ = .25 .913 .921 .917 .905 .901

M-SCSPRT: δ = .15 .917 .924 .916 .903 .903
M-SCSPRT: δ = .25 .916 .919 .915 .902 .906

M-GLR: δ = .15 .912 .918 .913 .900 .902
M-GLR: δ = .25 .913 .916 .910 .898 .902

BCR: α = .05 .916 .919 .912 .902 .911
BCR: α = .10 .910 .911 .908 .901 .910
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Table B.22: Various loss values within each item selection algorithm by stopping rule
assuming a non-compensatory classification bound function and a within multidimen-
sional item bank.

Loss (P = 100)

Stop↓ Select→ D-FI L-FI L-ELR L-KL S-KL

P-SPRT: δ = .15 60.6 50.6 47.4 46.0 46.6
P-SPRT: δ = .25 42.2 35.3 36.6 34.3 34.4
C-SPRT: δ = .15 77.5 70.2 70.7 76.2 80.3
C-SPRT: δ = .25 59.9 51.7 54.4 60.9 67.5

M-SCSPRT: δ = .15 74.1 63.8 67.7 73.3 77.5
M-SCSPRT: δ = .25 58.3 50.3 53.4 60.5 65.8

M-GLR: δ = .15 52.9 49.5 51.0 55.4 57.2
M-GLR: δ = .25 48.9 46.1 47.7 52.9 54.1

BCR: α = .05 45.1 43.4 45.1 45.2 42.9
BCR: α = .10 36.6 36.1 36.6 37.3 34.3

Loss (P = 500)

Stop↓ Select→ D-FI L-FI L-ELR L-KL S-KL

P-SPRT: δ = .15 96.5 87.0 90.2 90.2 87.2
P-SPRT: δ = .25 85.6 81.5 90.2 85.5 80.9
C-SPRT: δ = .15 111.6 101.7 102.3 115.8 118.9
C-SPRT: δ = .25 94.5 83.4 87.5 99.0 106.9

M-SCSPRT: δ = .15 107.5 94.3 101.3 111.9 116.1
M-SCSPRT: δ = .25 91.7 82.7 87.4 99.8 103.2

M-GLR: δ = .15 88.2 82.4 86.0 95.4 96.4
M-GLR: δ = .25 83.8 79.7 83.6 93.8 93.2

BCR: α = .05 78.6 76.0 80.3 84.3 78.7
BCR: α = .10 72.6 71.6 73.3 77.1 70.3

Loss (P = 1000)

Stop↓ Select→ D-FI L-FI L-ELR L-KL S-KL

P-SPRT: δ = .15 141.4 132.4 143.7 145.5 137.9
P-SPRT: δ = .25 139.9 139.3 157.3 149.6 138.9
C-SPRT: δ = .15 154.1 141.0 141.9 165.3 167.1
C-SPRT: δ = .25 137.8 123.1 128.8 146.6 156.1

M-SCSPRT: δ = .15 149.2 132.3 143.4 160.2 164.5
M-SCSPRT: δ = .25 133.5 123.2 129.8 149.0 150.0

M-GLR: δ = .15 132.4 123.5 129.8 145.5 145.3
M-GLR: δ = .25 127.4 121.7 128.4 144.9 142.2

BCR: α = .05 120.4 116.7 124.4 133.1 123.3
BCR: α = .10 117.7 115.9 119.2 126.8 115.3
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B.2 Effect Sizes

Table B.23: The sums of squares (Sum Sq.), η2 = SSF
SST , and ω2 = SSF−dfF×MSE

SST+MSE , where
SSF is the sums of squares for a particular factor and dfF is the corresponding degrees of
freedom, for an ANOVA predicting mean classification accuracy given a compensatory
classification bound function. The ANOVA was run with all main effects, two-way
interactions, and three-way interactions.

Variance Type Sum Sq. η2 ω2

Correlation (Cor) 0.00841 .185 .185

Item Bank (Bank) 0.01055 .233 .232

Select Alg. (Select) 0.00054 .012 .011

Stop Rule (Stop) 0.02115 .466 .464

Cor by Bank 0.00001 .000 .000

Cor by Select 0.00004 .001 .000

Cor by Stop 0.00010 .002 .000

Bank by Select 0.00044 .010 .009

Bank by Stop 0.00111 .025 .023

Select by Stop 0.00066 .015 .007

Cor by Bank by Select 0.00006 .001 .001

Cor by Bank by Stop 0.00014 .003 .001

Cor by Select by Stop 0.00038 .008 .004

Bank by Select by Stop 0.00053 .012 .000

Residuals 0.00123

Total 0.04535
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Table B.24: The sums of squares (Sum Sq.), η2 = SSF
SST , and ω2 = SSF−dfF×MSE

SST+MSE , where
SSF is the sums of squares for a particular factor and dfF is the corresponding degrees of
freedom, for an ANOVA predicting mean test length given a compensatory classification
bound function. The ANOVA was run with all main effects, two-way interactions, and
three-way interactions.

Variance Type Sum Sq. η2 ω2

Correlation (Cor) 947.55 .032 .032

Item Bank (Bank) 6901.34 .230 .230

Select Alg. (Select) 382.07 .013 .013

Stop Rule (Stop) 20301.92 .676 .676

Cor by Bank 20.47 .001 .001

Cor by Select 6.07 .000 .000

Cor by Stop 49.39 .002 .002

Bank by Select 214.77 .007 .007

Bank by Stop 1030.04 .034 .034

Select by Stop 84.24 .003 .003

Cor by Bank by Select 10.82 .000 .000

Cor by Bank by Stop 1.21 .000 .000

Cor by Select by Stop 4.52 .000 .000

Bank by Select by Stop 40.64 .001 .001

Residuals 16.31

Total 30011.36
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Table B.25: The sums of squares (Sum Sq.), η2 = SSF
SST , and ω2 = SSF−dfF×MSE

SST+MSE , where
SSF is the sums of squares for a particular factor and dfF is the corresponding degrees of
freedom, for an ANOVA predicting average loss (with P = 100) given a compensatory
classification bound function. The ANOVA was run with all main effects, two-way
interactions, and three-way interactions.

Variance Type Sum Sq. η2 ω2

Correlation (Cor) 1596.31 .055 .055

Item Bank (Bank) 8713.36 .300 .300

Select Alg. (Select) 458.52 .016 .016

Stop Rule (Stop) 16867.19 .581 .581

Cor by Bank 23.51 .001 .001

Cor by Select 8.50 .000 .000

Cor by Stop 40.56 .001 .001

Bank by Select 274.68 .009 .009

Bank by Stop 910.04 .031 .031

Select by Stop 27.23 .003 .002

Cor by Bank by Select 12.40 .000 .000

Cor by Bank by Stop 3.21 .000 .000

Cor by Select by Stop 8.04 .000 .000

Bank by Select by Stop 30.39 .001 .001

Residuals 30.68

Total 29050.62
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Table B.26: The sums of squares (Sum Sq.), η2 = SSF
SST , and ω2 = SSF−dfF×MSE

SST+MSE , where
SSF is the sums of squares for a particular factor and dfF is the corresponding degrees of
freedom, for an ANOVA predicting average loss (with P = 500) given a compensatory
classification bound function. The ANOVA was run with all main effects, two-way
interactions, and three-way interactions.

Variance Type Sum Sq. η2 ω2

Correlation (Cor) 5873.68 .171 .171

Item Bank (Bank) 18071.32 .527 .527

Select Alg. (Select) 871.64 .025 .025

Stop Rule (Stop) 7357.64 .215 .214

Cor by Bank 37.78 .001 .001

Cor by Select 26.00 .001 .000

Cor by Stop 24.33 .001 .000

Bank by Select 602.59 .018 .017

Bank by Stop 652.44 .019 .018

Select by Stop 162.14 .005 .002

Cor by Bank by Select 31.25 .001 .001

Cor by Bank by Stop 39.93 .001 .001

Cor by Select by Stop 97.63 .003 .000

Bank by Select by Stop 95.21 .003 .000

Residuals 333.79

Total 34277.35
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Table B.27: The sums of squares (Sum Sq.), η2 = SSF
SST , and ω2 = SSF−dfF×MSE

SST+MSE , where
SSF is the sums of squares for a particular factor and dfF is the corresponding degrees of
freedom, for an ANOVA predicting average loss (with P = 1000) given a compensatory
classification bound function. The ANOVA was run with all main effects, two-way
interactions, and three-way interactions.

Variance Type Sum Sq. η2 ω2

Correlation (Cor) 15005.63 .245 .245

Item Bank (Bank) 34516.04 .564 .564

Select Alg. (Select) 1629.49 .027 .026

Stop Rule (Stop) 4986.82 .081 .080

Cor by Bank 60.35 .001 .001

Cor by Select 65.33 .001 .000

Cor by Stop 47.01 .001 .000

Bank by Select 1211.06 .020 .019

Bank by Stop 830.79 .014 .012

Select by Stop 572.43 .009 .004

Cor by Bank by Select 82.96 .001 .001

Cor by Bank by Stop 150.41 .002 .001

Cor by Select by Stop 379.57 .006 .001

Bank by Select by Stop 414.33 .007 .001

Residuals 1265.37

Total 61217.58
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Table B.28: The sums of squares (Sum Sq.), η2 = SSF
SST , and ω2 = SSF−dfF×MSE

SST+MSE , where
SSF is the sums of squares for a particular factor and dfF is the corresponding de-
grees of freedom, for an ANOVA predicting mean classification accuracy given a non-
compensatory classification bound function. The ANOVA was run with all main effects,
two-way interactions, and three-way interactions.

Variance Type Sum Sq. η2 ω2

Correlation (Cor) .00228 .014 .014

Item Bank (Bank) .00202 .013 .012

Select Alg. (Select) .01002 .062 .062

Stop Rule (Stop) .04586 .285 .283

Cor by Bank .00033 .002 .002

Cor by Select .00052 .003 .003

Cor by Stop .00151 .009 .008

Bank by Select .00922 .057 .057

Bank by Stop .01417 .088 .087

Select by Stop .03695 .229 .224

Cor by Bank by Select .00008 .000 .000

Cor by Bank by Stop .00227 .014 .013

Cor by Select by Stop .00207 .013 .007

Bank by Select by Stop .03036 .188 .183

Residuals .00343

Total .16110
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Table B.29: The sums of squares (Sum Sq.), η2 = SSF
SST , and ω2 = SSF−dfF×MSE

SST+MSE , where
SSF is the sums of squares for a particular factor and dfF is the corresponding degrees of
freedom, for an ANOVA predicting mean test length given a non-compensatory classifi-
cation bound function. The ANOVA was run with all main effects, two-way interactions,
and three-way interactions.

Variance Type Sum Sq. η2 ω2

Correlation (Cor) 23.52 .000 .000

Item Bank (Bank) 9372.46 .198 .198

Select Alg. (Select) 2499.74 .053 .053

Stop Rule (Stop) 23168.56 .488 .488

Cor by Bank 31.34 .001 .001

Cor by Select 11.53 .000 .000

Cor by Stop 44.09 .001 .001

Bank by Select 529.32 .011 .011

Bank by Stop 8308.66 .175 .175

Select by Stop 2147.33 .045 .045

Cor by Bank by Select 3.43 .000 .000

Cor by Bank by Stop 20.03 .000 .000

Cor by Select by Stop 45.52 .001 .001

Bank by Select by Stop 1166.62 .025 .024

Residuals 63.67

Total 47435.8
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Table B.30: The sums of squares (Sum Sq.,), η2 = SSF
SST , and ω2 = SSF−dfF×MSE

SST+MSE , where
SSF is the sums of squares for a particular factor and dfF is the corresponding de-
grees of freedom, for an ANOVA predicting average loss (with P = 100) given a non-
compensatory classification bound function. The ANOVA was run with all main effects,
two-way interactions, and three-way interactions.

Variance Type Sum Sq. η2 ω2

Correlation (Cor) 92.71 .002 .002

Item Bank (Bank) 10261.88 .232 .232

Select Alg. (Select) 1850.14 .042 .042

Stop Rule (Stop) 20898.56 .473 .473

Cor by Bank 14.39 .000 .000

Cor by Select 12.80 .000 .000

Cor by Stop 58.93 .001 .001

Bank by Select 655.37 .015 .015

Bank by Stop 7826.82 .177 .177

Select by Stop 1588.97 .036 .035

Cor by Bank by Select 3.43 .000 .000

Cor by Bank by Stop 48.70 .001 .001

Cor by Select by Stop 59.37 .001 .001

Bank by Select by Stop 699.06 .016 .015

Residuals 86.11

Total 44157.22
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Table B.31: The sums of squares (Sum Sq.), η2 = SSF
SST , and ω2 = SSF−dfF×MSE

SST+MSE , where
SSF is the sums of squares for a particular factor and dfF is the corresponding de-
grees of freedom, for an ANOVA predicting average loss (with P = 500) given a non-
compensatory classification bound function. The ANOVA was run with all main effects,
two-way interactions, and three-way interactions.

Variance Type Sum Sq. η2 ω2

Correlation (Cor) 826.27 .013 .013

Item Bank (Bank) 14222.67 .225 .225

Select Alg. (Select) 1255.69 .020 .019

Stop Rule (Stop) 20990.53 .332 .331

Cor by Bank 11.74 .000 .000

Cor by Select 122.77 .002 .002

Cor by Stop 420.67 .007 .006

Bank by Select 3004.08 .047 .047

Bank by Stop 8733.25 .138 .137

Select by Stop 6746.22 .107 .103

Cor by Bank by Select 19.20 .000 .000

Cor by Bank by Stop 616.90 .010 .009

Cor by Select by Stop 528.21 .008 .005

Bank by Select by Stop 4901.73 .077 .074

Residuals 862.58

Total 63262.51
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Table B.32: The sums of squares (Sum Sq.), η2 = SSF
SST , and ω2 = SSF−dfF×MSE

SST+MSE , where
SSF is the sums of squares for a particular factor and dfF is the corresponding de-
grees of freedom, for an ANOVA predicting average loss (with P = 1000) given a
non-compensatory classification bound function. The ANOVA was run with all main
effects, two-way interactions, and three-way interactions.

Variance Type Sum Sq. η2 ω2

Correlation (Cor) 2771.02 .017 .017

Item Bank (Bank) 20080.65 .126 .126

Select Alg. (Select) 5021.52 .031 .031

Stop Rule (Stop) 41742.42 .261 .260

Cor by Bank 155.06 .001 .001

Cor by Select 496.26 .003 .002

Cor by Stop 1553.18 .010 .008

Bank by Select 10090.19 .063 .063

Bank by Stop 16242.32 .102 .100

Select by Stop 29821.84 .187 .181

Cor by Bank by Select 74.37 .000 .000

Cor by Bank by Stop 2347.48 .015 .013

Cor by Select by Stop 2044.56 .013 .007

Bank by Select by Stop 23819.22 .149 .144

Residuals 3378.25

Total 159638.2



Appendix C

Figures: Aggregate over

Distribution

The following figures depict the relationship between accuracy and test length for various

conditions aggregated across a distribution of simulees. In all of the figures, ability was

simulated from a bivariate normal distribution.
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Figure C.1: Scatterplots of the percent classified correctly (PCC) by average number
of items administered for different true correlations between ability dimensions (top
panel) and different item banks (bottom panel) using either a compensatory classifica-
tion bound function (left panel) or a non-compensatory classification bound function
(right panels).
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Figure C.2: Scatterplots of the percent classified correctly (PCC) by average number
of items administered for different item selection algorithms (top panel) and different
stopping rules (bottom panels) using either a compensatory classification bound function
(left panel) or a non-compensatory classification bound function (right panels).
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Figure C.3: Scatterplots of the percent classified correctly (PCC) by average number of
items administered based on the interaction between true correlations between ability
dimensions and item bank using either a compensatory classification bound function
(top panels) or a non-compensatory classification bound function (bottom panels). The
left panels are color coded according to correlation condition, whereas the right panels
are color coded according to item bank.
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Figure C.4: Scatterplots of the percent classified correctly (PCC) by average number
of items administered based on the interaction between true correlations between abil-
ity dimensions and item selection algorithm using either a compensatory classification
bound function (top panels) or a non-compensatory classification bound function (bot-
tom panels). The left panels are color coded according to correlation condition, whereas
the right panels are color coded according to item selection algorithm.
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Figure C.5: Scatterplots of the percent classified correctly (PCC) by average number of
items administered based on the interaction between true correlations between ability
dimensions and stopping rule using either a compensatory classification bound function
(top panels) or a non-compensatory classification bound function (bottom panels). The
left panels are color coded according to correlation condition, whereas the right panels
are color coded according to stopping rule.
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Figure C.6: Scatterplots of the percent classified correctly (PCC) by average number
of items administered based on the interaction between item bank and item selection
algorithm using either a compensatory classification bound function (top panels) or a
non-compensatory classification bound function (bottom panels). The left panels are
color coded according to item bank, whereas the right panels are color coded according
to item selection algorithm.
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Figure C.7: Scatterplots of the percent classified correctly (PCC) by average number of
items administered based on the interaction between item bank and stopping rule using
either a compensatory classification bound function (top panels) or a non-compensatory
classification bound function (bottom panels). The left panels are color coded according
to item bank, whereas the right panels are color coded according to stopping rule.
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Figure C.8: Scatterplots of the percent classified correctly (PCC) by average number
of items administered based on the interaction between item selection algorithm and
stopping rule using either a compensatory classification bound function (top panels) or
a non-compensatory classification bound function (bottom panels). The left panels are
color coded according to item selection algorithm, whereas the right panels are color
coded according to stopping rule.
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C.2 Loss Trend Plots
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Figure C.9: Average loss within each item selection algorithm or stopping rule for various
values of P , where Loss = P × IW +J (see Appendix B). The upper panels indicate the
average loss for each of the item selection algorithms, whereas the lower panels indicate
the average loss for each of the stopping rules. The left panels represent a compensatory
classification bound function, whereas the right panels represent a non-compensatory
classification bound function.
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Figure C.10: Average loss within each item selection algorithm by item bank or stopping
rule by item bank for various values of P , where Loss = P×IW+J (see Appendix B). The
upper panels indicate the average loss for each of the item selection algorithms by item
bank, whereas the lower panels indicate the average loss for each of the stopping rules
by item bank. The left panels represent a compensatory classification bound function,
whereas the right panels represent a non-compensatory classification bound function.
Colors are coded according to item selection algorithm or stopping rule, whereas line
type is determined by item bank.



Appendix D

Figures: Conditional on Ability

The following figures depict the accuracy, test length, and loss conditional on various

ability vectors for 48 out of the 600 overall conditions. These conditions were chosen by

examining the scatterplots and loss trend plots when aggregating over a distribution. I

simplified the number of conditions as follows: (1) The true correlation between θ1 and

θ2 was always assumed to be .33; (2) When using the compensatory classification bound

function, the MCMT algorithm selected items from the within-item multidimensional

bank; (3) When using the non-compensatory classification bound function, the MCMT

algorithm selected items from the between-item multidimensional bank; and (4) The

weakest item selection algorithm (D-FI) and stopping rule (P-SPRT) were eliminated.

Note that loss is defined as the average of Loss = P × IW + J , where IW is an indicator

function for incorrect classification, J is the number of items given to an examinee, and

P is the penalty accrued for an incorrect decision. In all cases, I chose P = 500.
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Figure D.1: Legends for the conditional accuracy, test length, and loss function plots
depicted on the following pages. The left-most panel indicates the bubble color and size
code for the accuracy plots, the middle panel depicts the same information for the test
length plots, and the right-most panel depicts the same information for the loss function
plots. In all cases, small blue points represent good results, whereas large red points
represent bad results.



209

D.1 Accuracy Plots

●

●
●

●
●

●
●

●
●

● ●●
●

● ●● ●●
● ●● ●●

● ●●● ●●
●●● ●●●

●●
●●● ●

●●
●●

●
●●

●●
●

●
●●

●
●

●
●

●
●

●

●
●

●

θ1

θ 2

L−Fisher Information

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

●

●

●

●

●

●

●

●

●

●

Accuracy

.95

.90

.85

.80

.75

.70

.65

.60

.55

.50

●

●
●

●
●

●
●

●
●

● ●●
●

● ●● ●●
● ●● ●●

● ●●● ●●
●●● ●●●

●●
●●● ●

●●
●●

●
●●

●●
●

●
●●

●
●

●
●

●
●

●

●
●

●

θ1

θ 2

L−Expected Likelihood Ratio

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

●

●

●

●

●

●

●

●

●

●

Accuracy

.95

.90

.85

.80

.75

.70

.65

.60

.55

.50

●

●
●

●
●

●
●

●
●

● ●●
●

● ●● ●●
● ●● ●●

● ●●● ●●
●●● ●●●

●●
●●● ●

●●
●●

●
●●

●●
●

●
●●

●
●

●
●

●
●

●

●
●

●

θ1

θ 2

L−KL Divergence

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

●

●

●

●

●

●

●

●

●

●

Accuracy

.95

.90

.85

.80

.75

.70

.65

.60

.55

.50

●

●
●

●
●

●
●

●
●

● ●●
●

● ●● ●●
● ●● ●●

● ●●● ●●
●●● ●●●

●●
●●● ●

●●
●●

●
●●

●●
●

●
●●

●
●

●
●

●
●

●

●
●

●

θ1

θ 2

S−KL Divergence

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

●

●

●

●

●

●

●

●

●

●

Accuracy

.95

.90

.85

.80

.75

.70

.65

.60

.55

.50

Figure D.2: Scatterplots of the conditional accuracy rate for various vectors of true
ability when using the compensatory classification bound function and the C-SPRT
stopping rule with δ = .25. Different panels represent different item selection algorithms.
Bubbles are color-coded and sized according to accuracy rate. See the left-most panel
of Figure D.1 for more information.
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Figure D.3: Scatterplots of the conditional accuracy rate for various vectors of true
ability when using the compensatory classification bound function and the M-SCSPRT
stopping rule with δ = .25. Different panels represent different item selection algorithms.
Bubbles are color-coded and sized according to accuracy rate. See the left-most panel
of Figure D.1 for more information.
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Figure D.4: Scatterplots of the conditional accuracy rate for various vectors of true
ability when using the compensatory classification bound function and the M-GLR
stopping rule with δ = .15. Different panels represent different item selection algorithms.
Bubbles are color-coded and sized according to accuracy rate. See the left-most panel
of Figure D.1 for more information.
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Figure D.5: Scatterplots of the conditional accuracy rate for various vectors of true
ability when using the compensatory classification bound function and the M-GLR
stopping rule with δ = .25. Different panels represent different item selection algorithms.
Bubbles are color-coded and sized according to accuracy rate. See the left-most panel
of Figure D.1 for more information.
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Figure D.6: Scatterplots of the conditional accuracy rate for various vectors of true
ability when using the compensatory classification bound function and the BCR stop-
ping rule with α = .05. Different panels represent different item selection algorithms.
Bubbles are color-coded and sized according to accuracy rate. See the left-most panel
of Figure D.1 for more information.
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Figure D.7: Scatterplots of the conditional accuracy rate for various vectors of true
ability when using the compensatory classification bound function and the BCR stop-
ping rule with α = .10. Different panels represent different item selection algorithms.
Bubbles are color-coded and sized according to accuracy rate. See the left-most panel
of Figure D.1 for more information.
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Figure D.8: Scatterplots of the conditional accuracy rate for various vectors of true
ability when using the non-compensatory classification bound function and the C-SPRT
stopping rule with δ = .25. Different panels represent different item selection algorithms.
Bubbles are color-coded and sized according to accuracy rate. See the left-most panel
of Figure D.1 for more information.
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Figure D.9: Scatterplots of the conditional accuracy rate for various vectors of true abil-
ity when using the non-compensatory classification bound function and the M-SCSPRT
stopping rule with δ = .25. Different panels represent different item selection algo-
rithms. Bubbles are color-coded and sized according to accuracy rate. See the left-most
panel of Figure D.1 for more information.
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Figure D.10: Scatterplots of the conditional accuracy rate for various vectors of true
ability when using the non-compensatory classification bound function and the M-GLR
stopping rule with δ = .15. Different panels represent different item selection algorithms.
Bubbles are color-coded and sized according to accuracy rate. See the left-most panel
of Figure D.1 for more information.
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Figure D.11: Scatterplots of the conditional accuracy rate for various vectors of true
ability when using the non-compensatory classification bound function and the M-GLR
stopping rule with δ = .25. Different panels represent different item selection algorithms.
Bubbles are color-coded and sized according to accuracy rate. See the left-most panel
of Figure D.1 for more information.
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Figure D.12: Scatterplots of the conditional accuracy rate for various vectors of true
ability when using the non-compensatory classification bound function and the BCR
stopping rule with α = .05. Different panels represent different item selection algo-
rithms. Bubbles are color-coded and sized according to accuracy rate. See the left-most
panel of Figure D.1 for more information.
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Figure D.13: Scatterplots of the conditional accuracy rate for various vectors of true
ability when using the non-compensatory classification bound function and the BCR
stopping rule with α = .10. Different panels represent different item selection algo-
rithms. Bubbles are color-coded and sized according to accuracy rate. See the left-most
panel of Figure D.1 for more information.
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D.2 Test Length Plots
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Figure D.14: Scatterplots of the conditional average test length for various vectors
of true ability when using the compensatory classification bound function and the C-
SPRT stopping rule with δ = .25. Different panels represent different item selection
algorithms. Bubbles are color-coded and sized according to test length. See the middle
panel of Figure D.1 for more information.
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Figure D.15: Scatterplots of the conditional average test length for various vectors of
true ability when using the compensatory classification bound function and the M-
SCSPRT stopping rule with δ = .25. Different panels represent different item selection
algorithms. Bubbles are color-coded and sized according to test length. See the middle
panel of Figure D.1 for more information.
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Figure D.16: Scatterplots of the conditional average test length for various vectors of
true ability when using the compensatory classification bound function and the M-
GLR stopping rule with δ = .15. Different panels represent different item selection
algorithms. Bubbles are color-coded and sized according to test length. See the middle
panel of Figure D.1 for more information.
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Figure D.17: Scatterplots of the conditional average test length for various vectors of
true ability when using the compensatory classification bound function and the M-
GLR stopping rule with δ = .25. Different panels represent different item selection
algorithms. Bubbles are color-coded and sized according to test length. See the middle
panel of Figure D.1 for more information.
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Figure D.18: Scatterplots of the conditional average test length for various vectors of
true ability when using the compensatory classification bound function and the BCR
stopping rule with α = .05. Different panels represent different item selection algo-
rithms. Bubbles are color-coded and sized according to test length. See the middle
panel of Figure D.1 for more information.
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Figure D.19: Scatterplots of the conditional average test length for various vectors of
true ability when using the compensatory classification bound function and the BCR
stopping rule with α = .10. Different panels represent different item selection algo-
rithms. Bubbles are color-coded and sized according to test length. See the middle
panel of Figure D.1 for more information.
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Figure D.20: Scatterplots of the conditional average test length for various vectors of
true ability when using the non-compensatory classification bound function and the
C-SPRT stopping rule with δ = .25. Different panels represent different item selection
algorithms. Bubbles are color-coded and sized according to test length. See the middle
panel of Figure D.1 for more information.
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Figure D.21: Scatterplots of the conditional average test length for various vectors of
true ability when using the non-compensatory classification bound function and the M-
SCSPRT stopping rule with δ = .25. Different panels represent different item selection
algorithms. Bubbles are color-coded and sized according to test length. See the middle
panel of Figure D.1 for more information.



229

●

●
●

●
●

●●
●

●● ●●
●● ●● ●●● ●● ●●● ●●● ●● ●●● ●●● ●● ●●● ●●● ●● ●●● ●● ●●

●● ●●
●

●●
●

●
●

●

●

θ1

θ 2

L−Fisher Information

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

●

●

●

●

●

●

●

●

●

●

Length

11
19
27
34
41

50
57
64
73
80

●

●
●

●
●

●●
●

●● ●●
●● ●● ●●● ●● ●●● ●●● ●● ●●● ●●● ●● ●●● ●●● ●● ●●● ●● ●●

●● ●●
●

●●
●

●
●

●

●

θ1

θ 2

L−Expected Likelihood Ratio

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

●

●

●

●

●

●

●

●

●

●

Length

11
19
27
34
41

50
57
64
73
80

●

●
●

●
●

●●
●

●● ●●
●● ●● ●●● ●● ●●● ●●● ●● ●●● ●●● ●● ●●● ●●● ●● ●●● ●● ●●

●● ●●
●

●●
●

●
●

●

●

θ1

θ 2

L−KL Divergence

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

●

●

●

●

●

●

●

●

●

●

Length

11
19
27
34
41

50
57
64
73
80

●

●
●

●
●

●●
●

●● ●●
●● ●● ●●● ●● ●●● ●●● ●● ●●● ●●● ●● ●●● ●●● ●● ●●● ●● ●●

●● ●●
●

●●
●

●
●

●

●

θ1

θ 2

S−KL Divergence

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

●

●

●

●

●

●

●

●

●

●

Length

11
19
27
34
41

50
57
64
73
80

Figure D.22: Scatterplots of the conditional average test length for various vectors of
true ability when using the non-compensatory classification bound function and the
M-GLR stopping rule with δ = .15. Different panels represent different item selection
algorithms. Bubbles are color-coded and sized according to test length. See the middle
panel of Figure D.1 for more information.
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Figure D.23: Scatterplots of the conditional average test length for various vectors of
true ability when using the non-compensatory classification bound function and the
M-GLR stopping rule with δ = .25. Different panels represent different item selection
algorithms. Bubbles are color-coded and sized according to test length. See the middle
panel of Figure D.1 for more information.
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Figure D.24: Scatterplots of the conditional average test length for various vectors of
true ability when using the non-compensatory classification bound function and the
BCR stopping rule with α = .05. Different panels represent different item selection
algorithms. Bubbles are color-coded and sized according to test length. See the middle
panel of Figure D.1 for more information.
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Figure D.25: Scatterplots of the conditional average test length for various vectors of
true ability when using the non-compensatory classification bound function and the
BCR stopping rule with α = .10. Different panels represent different item selection
algorithms. Bubbles are color-coded and sized according to test length. See the middle
panel of Figure D.1 for more information.
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Figure D.26: Scatterplots of the conditional average loss for various vectors of true
ability when using the compensatory classification bound function and the C-SPRT
stopping rule with δ = .25. Different panels represent different item selection algorithms.
Bubbles are color-coded and sized according to loss. See the right-most panel of Figure
D.1 for more information.
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Figure D.27: Scatterplots of the conditional average loss for various vectors of true
ability when using the compensatory classification bound function and the M-SCSPRT
stopping rule with δ = .25. Different panels represent different item selection algorithms.
Bubbles are color-coded and sized according to loss. See the right-most panel of Figure
D.1 for more information.
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Figure D.28: Scatterplots of the conditional average loss for various vectors of true
ability when using the compensatory classification bound function and the M-GLR
stopping rule with δ = .15. Different panels represent different item selection algorithms.
Bubbles are color-coded and sized according to loss. See the right-most panel of Figure
D.1 for more information.
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Figure D.29: Scatterplots of the conditional average loss for various vectors of true
ability when using the compensatory classification bound function and the M-GLR
stopping rule with δ = .25. Different panels represent different item selection algorithms.
Bubbles are color-coded and sized according to loss. See the right-most panel of Figure
D.1 for more information.
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Figure D.30: Scatterplots of the conditional average loss for various vectors of true abil-
ity when using the compensatory classification bound function and the BCR stopping
rule with α = .05. Different panels represent different item selection algorithms. Bub-
bles are color-coded and sized according to loss. See the right-most panel of Figure D.1
for more information.
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Figure D.31: Scatterplots of the conditional average loss for various vectors of true abil-
ity when using the compensatory classification bound function and the BCR stopping
rule with α = .10. Different panels represent different item selection algorithms. Bub-
bles are color-coded and sized according to loss. See the right-most panel of Figure D.1
for more information.
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Figure D.32: Scatterplots of the conditional average loss for various vectors of true
ability when using the non-compensatory classification bound function and the C-SPRT
stopping rule with δ = .25. Different panels represent different item selection algorithms.
Bubbles are color-coded and sized according to loss. See the right-most panel of Figure
D.1 for more information.
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Figure D.33: Scatterplots of the conditional average loss for various vectors of true abil-
ity when using the non-compensatory classification bound function and the M-SCSPRT
stopping rule with δ = .25. Different panels represent different item selection algo-
rithms. Bubbles are color-coded and sized according to loss. See the right-most panel
of Figure D.1 for more information.
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Figure D.34: Scatterplots of the conditional average loss for various vectors of true
ability when using the non-compensatory classification bound function and the M-GLR
stopping rule with δ = .15. Different panels represent different item selection algorithms.
Bubbles are color-coded and sized according to loss. See the right-most panel of Figure
D.1 for more information.
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Figure D.35: Scatterplots of the conditional average loss for various vectors of true
ability when using the non-compensatory classification bound function and the M-GLR
stopping rule with δ = .25. Different panels represent different item selection algorithms.
Bubbles are color-coded and sized according to loss. See the right-most panel of Figure
D.1 for more information.
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Figure D.36: Scatterplots of the conditional average test length for various vectors of
true ability when using the non-compensatory classification bound function and the
BCR stopping rule with α = .05. Different panels represent different item selection
algorithms. Bubbles are color-coded and sized according to test length. See the middle
panel of Figure D.1 for more information.
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Figure D.37: Scatterplots of the conditional average loss for various vectors of true
ability when using the non-compensatory classification bound function and the BCR
stopping rule with α = .10. Different panels represent different item selection algo-
rithms. Bubbles are color-coded and sized according to loss. See the right-most panel
of Figure D.1 for more information.


	Acknowledgements
	Abstract
	List of Tables
	List of Figures
	Introduction 
	Unidimensional Algorithms 
	Unidimensional IRT and Mastery Testing 
	Unidimensional Stopping Rules
	The Sequential Probability Ratio Test
	The Generalized Likelihood Ratio
	The SPRT with Stochastic Curtailment
	The SPRT with Predictive Power
	Bayesian Decision Rules

	Unidimensional Item Selection Algorithms
	Fisher Information Methods
	Kullback-Leibler Methods
	Mastery Testing Methods


	SPRT and Binary Response Models
	Mathematical Considerations
	The SPRT Test Statistic and Classification Bounds
	The SPRT Test Statistic and Item Difficulties
	The Expected SPRT Algorithm

	Simulation Considerations
	Simulation 1
	Simulation 2


	Multidimensional Algorithms 
	Multidimensional IRT and Mastery Testing 
	Multidimensional Item Response Theory Models
	Multidimensional Diagnostic Classification Models
	Multidimensional Mastery Testing

	Multidimensional Stopping Rules
	Multidimensional Sequential Probability Ratio Tests
	Multidimensional Generalized Likelihood Ratio Tests
	Multidimensional Curtailed Procedures

	Multidimensional Item Selection Algorithms
	Fisher Information Methods
	Kullback-Leibler Methods
	Mastery Testing Methods


	Study Design and Procedures
	Assessment Properties
	Item Bank and IRT Model
	Latent Trait Distribution
	Classification Bound Functions
	Overall CAT Algorithm

	Adaptive Testing Procedures
	Ability Estimation Algorithms
	Item Selection Algorithms
	Stopping Rules
	Overall Conditions


	Simulation Results 
	Results 1: Aggregated across a Distribution
	Results 2: Conditional on Specific Ability Vectors

	Discussion and Conclusion 
	Summary and Discussion of Results
	Conclusion

	References
	 Appendix A.  Derivations
	Maximum of the Log-Likelihood Ratio for a Correct Response
	Maximum of the Expected Log-Likelihood Ratio with respect to 0
	Maximum of the Expected Log-Likelihood Ratio with respect to b

	 Appendix B.  Tables: Aggregate over Distribution
	Group Means
	Effect Sizes

	 Appendix C.  Figures: Aggregate over Distribution
	Scatterplots
	Loss Trend Plots

	 Appendix D.  Figures: Conditional on Ability
	Accuracy Plots
	Test Length Plots
	Loss Plots


