The Expected Likelihood Ratio in CCT

Steven W. Nydick April 9, 2016

Problems with Classification Testing

The problem in computerized classification testing (CCT): How do we efficiently determine whether or not an examinee exceeds some cut-point, θ_0 , in the fewest number of items with a pre-specified accuracy rate?

This is usually thought of as a **stopping-rule** issue.

- Stopping rule? Directly affects accuracy and efficiency.
- Item selection algorithm? Mostly consensus.
 - Select items at the cut-point separating categories.
 - Fisher information, KL divergence, mutual information.

Preliminaries

Assume the following for the remainder:

1 Items fit the unidimensional 3PL IRT model.

$$p_j(\theta_i) = \Pr(Y_{ij} = 1 | \theta_i, a_j, b_j, c_j) = c_j + \frac{1 - c_j}{1 + \exp[-a_j(\theta_i - b_j)]},$$

2 Decisions are only mastery vs. non-mastery. $H_0: \theta_i = \theta_I = \theta_0 - \delta$ $H_1: \theta_i = \theta_u = \theta_0 + \delta$,

3 Tests are variable-length with the SPRT decision rule.

The Sequential Probability Ratio Test

A commonly used stopping rule: The SPRT (e.g., Wald, 1947).

① Determine *simple* statistical hypotheses (Eggen, 1999):

$$\mathsf{H}_0: \theta_i = \theta_l = \theta_0 - \delta \\ \mathsf{H}_1: \theta_i = \theta_u = \theta_0 + \delta,$$

2 Calculate log-likelhood ratio comparing the hypotheses.

$$\log\left[\mathsf{LR}(\theta_u, \theta_l | \mathbf{y}_i)\right] = \log\left[\frac{L(\theta_u | \mathbf{y}_i)}{L(\theta_l | \mathbf{y}_i)}\right]$$

3 End test if log-likelihood ratio exceeds threshold.

How should we select subsequent exam items?

- Common knowledge: At the cut-point (θ_0).
- Are there alternative options?

Cut-Point Complications

Complication 1: Given a correct response, SPRT evidence depends on the model asymptote (Nydick, 2014).

The maximum of the log-LR given a correct response:

$$\hat{\theta}_0 = \frac{\log(c_j)}{2a_j} + b_j.$$

If c_j = 0, then more difficult items yield more evidence.
If c_j > 0, then more difficult items can yield less evidence.

How can this inform which items to select?

Cut-Point Complications

Complication 2: The expected increase in SPRT evidence depends on a person's true ability (Nydick, 2014).

The Expected log-Likelihood Ratio (ELR):

$$\mathbb{E}\left[\log\left[\mathsf{LR}(\theta_u, \theta_l | Y_{ij})\right]\right] = p_j(\theta_i)\log\left[\frac{p_j(\theta_u)}{p_j(\theta_l)}\right] + [1 - p_j(\theta_i)]\log\left[\frac{1 - p_j(\theta_u)}{1 - p_j(\theta_l)}\right].$$

The ELR indicates the expected *increase* in the SPRT.
The ELR is dependent entirely on the IRT model and stopping rule.

Cut-Point Complications

Complication 2: The expected increase in SPRT evidence depends on a person's true ability (Nydick, 2014).

Which item maximizes the ELR?

- Assume fixed and constant *a*.
- Assume $c_i = 0$ for all items.

Then given a small δ , we find that

$$\lim_{\delta \to 0^+} \hat{b} = \frac{\theta_0 + \theta_i}{2}.$$

What would happen if we selected items at $\frac{\theta_0 + \hat{\theta}_i}{2}$?

Preliminary Simulation Method

Three item selection algorithms:

- FI-bound (the "recommended" algorithm).
- PI-ability (the "not-recommended" algorithm).
- **3** FI-middle (a new option).

Other specifications of this simulation:

- 10,000 simulees with $\theta \sim \mathbf{N}(0,1)$.
- 750 size item bank according to the 2PL IRT Model
- Classification bounds at $\theta_0 \in \{-3, -2, -1, 0, 1, 2, 3\}$.
 - Results aggregated across all simulees at a bound.

Preliminary Simulation Results: Length

Preliminary Simulation Results: Length

PEARSON

ALWAYS LEARNING

Preliminary Simulation Results: Length

PEARSON

ALWAYS LEARNING

Preliminary Simulation Results: Accuracy

Fixed Specifications

1 Latent Trait

- N = 10,000
- $\theta \sim \mathbf{N}(\mu = 0, \sigma = 1)$
- Olassification Bounds
 - $\theta_0 \in \{-3, -2, -1\}$
 - $\theta_0 = 0$
 - $\theta_0 \in \{+1, +2, +3\}$
- Stopping Rules
 - SPRT
 - $j_{\min} = 5$
 - $j_{max} = 200$
 - $\delta = 0.1$
 - $\alpha = \beta = .05$

Item Banks and IRT Models

Size of Item Bank

- J = 750
- J = 1,500

2 3PL IRT Model

- *b*-parameters
 - $b \sim \text{Unif}(\min = -4, \max = 4)$ (Flat)
 - $\boldsymbol{b} \sim \boldsymbol{N}(\mu = 0, \sigma = 1.500)$ (Moderate)
 - $b \sim N(\mu = 0, \sigma = 0.707)$ (Peaked)
- *c*-parameters
 - c = .25 (Fixed)
 - c = .00 (None)
 - $c \sim \text{Beta}(\alpha = 19.8, \beta = 79.2)$ (Random)
- *a*-parameters
 - $a \sim \log N(\mu_{\log} = 0.38, \sigma_{\log} = 0.25)$

Item Selection Algorithms

- 1 FI-bound
- PI-ability
- 3 FI-middle
- 4 KL-bound
 - In paper only.
- **5** KL-estimated
 - In paper only.
- 6 ELR
- FI-ability-hybrid
 - FI-ability until $s_{\hat{\theta}_i} < .5$.
 - ELR for remainder of exam.
- 8 KL-estimated-hybrid
 - In paper only.

Misc and Conditions Table

Conditions Table

Variable	Number of Conditions
b	3 (Flat, Moderate, Peaked)
С	3 (None, Fixed, Random)
J	2 (750, 1,500)
$ heta_0$	7 (-3, -2,, 3)
Item Selection	8
Overall	1008

Overall (J = 750; c = .25): Length

Overall (J = 750; c = .00**): Length**

b = flat; c = 0.00; size = 750

Conditional (J = 750; c = .25): Length

Conditional (J = 750; c = .00**): Length**

What are the answers to the following questions?

- Do different item selection algorithms perform differently for various cut-points relative to the ability distribution?
- 2 Do different item selection algorithms yield different average test lengths for different groups of simulees?
- 3 Can we decrease test length by considering ability as well as the classification bound in CCT item selection?
- A Should we build tests by selecting items with difficulty close to the classification bound?

Yes. Maximizing Fisher information based on the ability estimate works worse if c > 0 and low θ_0 .

What are the answers to the following questions?

- Do different item selection algorithms perform differently for various cut-points relative to the ability distribution?
- Do different item selection algorithms yield different average test lengths for different groups of simulees?
- 3 Can we decrease test length by considering ability as well as the classification bound in CCT item selection?
- A Should we build tests by selecting items with difficulty close to the classification bound?

Yes. Bound-based algorithms performed better near the bound. Modified algorithms performed better elsewhere.

What are the answers to the following questions?

- Do different item selection algorithms perform differently for various cut-points relative to the ability distribution?
- 2 Do different item selection algorithms yield different average test lengths for different groups of simulees?
- **③** Can we decrease test length by considering ability as well as the classification bound in CCT item selection?
- Should we build tests by selecting items with difficulty close to the classification bound?
- Yes. ELR and FI-middle yielded the shortest tests for most classification bounds, item banks, and simulees.

ALWAYS LEARNING

What are the answers to the following questions?

- Do different item selection algorithms perform differently for various cut-points relative to the ability distribution?
- 2 Do different item selection algorithms yield different average test lengths for different groups of simulees?
- 3 Can we decrease test length by considering ability as well as the classification bound in CCT item selection?
- Should we build tests by selecting items with difficulty close to the classification bound?

Probably not. The most efficient tests would have items with a (relatively) wide distribution of difficulties.

Extensions

How can we better consider uncertainty in θ ?

$$\mathsf{ELR}_{j}(\theta|w_{ij}) = \int_{\Theta} w_{ij} \mathsf{ELR}_{j}(\theta) d\theta$$

- Posterior ELR (or FI-middle)
 - $\mathbf{W}_{ij} = \pi(\theta | \mathbf{Y}_{i,j-1})$
- Likelihood-weighted ELR (or FI-middle)
 - $w_{ij} = L(\theta | \mathbf{y}_{i,j-1})$

How do these results generalize?

- Polytomous models
- Multidimensional models
- Alternative stopping rules
- Curtailment

Thank You!

References

Eggen, T. J. H. M. (1999). Item selection in adaptive testing with the sequential probability ratio test. *Applied Psychological Measurement*, *23*, 249–260.

Nydick, S. W. (2014). The sequential probability ratio test and binary item response models. *Journal of Educational and Behavioral Statistics*, *39*, 203–230.

Wald, A. (1947). *Sequential analysis*. New York, NY: John Wiley.