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Problems with Classification Testing

The problem in computerized classification testing (CCT):

How do we efficiently determine whether or not an
examinee exceeds some cut-point, 0y, in the fewest
number of items with a pre-specified accuracy rate?

This is usually thought of as a stopping-rule issue.
e Stopping rule? Directly affects accuracy and efficiency.
e Item selection algorithm? Mostly consensus.

e Select items at the cut-point separating categories.
e Fisher information, KL divergence, mutual information.
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Preliminaries

Assume the following for the remainder:
@ Items fit the unidimensional 3PL IRT model.

1-— Cj
1 +exp[—a;(¢; — bj)]’

pj(6;) = Pr(Yj; = 1|0, aj, bj, ¢;) = ¢; +
® Decisions are only mastery vs. non-mastery.

Ho : 6; = 6, = 0y — 6
Hi:0; =60, =0+,

© Tests are variable-length with the SPRT decision rule.
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The Sequential Probability Ratio Test
A commonly used stopping rule: The SPRT (e.g., Wald, 1947).

@ Determine simple statistical hypotheses (Eggen, 1999):
Ho:0;=6,=00—9¢
Hy:0; =46, =0y +9,

® Calculate log-likelhood ratio comparing the hypotheses.

L(9u|yi)}
L(Oly))
© End test if log-likelihood ratio exceeds threshold.

log [LR (84, 6/ly;)| = log [

How should we select subsequent exam items?

e Common knowledge: At the cut-point (6;).
e Are there alternative options?
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Cut-Point Complications

Complication 1: Given a correct response, SPRT evidence
depends on the model asymptote (Nydick, 2014).

The maximum of the log-LR given a correct response:

i = log(cj)

= b;.
0 2aj + J

@ If ¢; = 0, then more difficult items yield more evidence.
® If ¢c; > 0, then more difficult items can yield less evidence.

How can this inform which items to select?
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Cut-Point Complications

Complication 2: The expected increase in SPRT evidence
depends on a person’s true ability (Nydick, 2014).

The Expected log-Likelihood Ratio (ELR):

| log [LR(00.0/Y;)] | = py(010g | 22041+ 11~ pyanl g | =201 .

@ The ELR indicates the expected increase in the SPRT.

® The ELR is dependent entirely on the IRT model and
stopping rule.
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Cut-Point Complications

Complication 2: The expected increase in SPRT evidence
depends on a person’s true ability (Nydick, 2014).

Which item maximizes the ELR?

e Assume fixed and constant a.
e Assume ¢; = 0 for all items.

Then given a small §, we find that
0o + 6;

lim b = .
5—0+t 2

What would happen if we selected items at %:%?
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Preliminary Simulation Method

Three item selection algorithms:

@ FI-bound (the “recommended” algorithm).

® FI-ability (the “not-recommended” algorithm).
© FI-middle (a new option).

Other specifications of this simulation:
e 10,000 simulees with 6 ~ N(0,1).
e 750 size item bank according to the 2PL IRT Model
 Classification bounds at 6, € {-3,-2,-1,0,1,2,3}.

e Results aggregated across all simulees at a bound.
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Preliminary Simulation Results: Length
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Preliminary Simulation Results: Length
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Preliminary Simulation Results: Length
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Preliminary Simulation Results: Accuracy
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Fixed Specifications

@ Latent Trait

e N =10,000

. 0NN(‘LL:0’U:1)
® Classification Bounds

e e {—3, -2, —1}
i 90 =0
* 6y e {+1,+2,+3}
© Stopping Rules
e SPRT
jmin =95
jmax =200

0=0.1
a=p=.05
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Item Banks and IRT Models

@ Size of Item Bank
e J=1750
e J=1,500

® 3PL IRT Model
e b-parameters

® b ~ Unif(min = —4, max = 4) (Flat)
e b~ N(u=0,0 =1.500) (Moderate)
® b~ N(u=0,0=0.707) (Peaked)

e c-parameters

e c = .25 (Fixed)
e c=.00 (None)
® c~ Beta(a =19.8,3 =79.2) (Random)

e g-parameters
® a~10gN(ueg = 0.38,010g = 0.25)
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Item Selection Algorithms

@ FI-bound
® FI-ability
© FI-middle
O KL-bound
e In paper only.
O KL-estimated
e In paper only.
O ELR
@ FI-ability-hybrid
e FI-ability until s; <.5.
e ELR for remainder of exam.
@ KL-estimated-hybrid
e In paper only.
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Misc and Conditions Table

Conditions Table

Variable Number of Conditions

b 3 (Flat, Moderate, Peaked)
c 3 (None, Fixed, Random)
J 2 (750, 1,500)

6o 7 (-3,-2,...,3)

Item Selection 8

Overall 1008
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Overall (J =750;c = .25): Length

b = flat; ¢ = 0.25; size = 750
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Overall (J = 750;c = .00): Length

b = flat; ¢ = 0.00; size = 750
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Conditional (J = 750;c = .25): Length

b = flat; c = 0.25; size = 750
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Conditional (J = 750;c = .00): Length

b = flat; ¢ = 0.00; size = 750
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Summary of Results

What are the answers to the following questions?

@ Do different item selection algorithms perform differently
for various cut-points relative to the ability distribution?

® Do different item selection algorithms yield different average
test lengths for different groups of simulees?

© Can we decrease test length by considering ability as well as
the classification bound in CCT item selection?

@ Should we build tests by selecting items with difficulty close to
the classification bound?

Yes. Maximizing Fisher information based on the ability
estimate works worse if ¢ > 0 and low 6.
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Summary of Results

What are the answers to the following questions?

@ Do different item selection algorithms perform differently for
various cut-points relative to the ability distribution?

® Do different item selection algorithms yield different
average test lengths for different groups of simulees?

© Can we decrease test length by considering ability as well as
the classification bound in CCT item selection?

@ Should we build tests by selecting items with difficulty close to
the classification bound?

Yes. Bound-based algorithms performed better near the
bound. Modified algorithms performed better elsewhere.
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Summary of Results

What are the answers to the following questions?

@ Do different item selection algorithms perform differently for
various cut-points relative to the ability distribution?

® Do different item selection algorithms yield different average
test lengths for different groups of simulees?

© Can we decrease test length by considering ability as
well as the classification bound in CCT item selection?

@ Should we build tests by selecting items with difficulty close to
the classification bound?

Yes. ELR and FI-middle yielded the shortest tests for most
classification bounds, item banks, and simulees.
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Summary of Results

What are the answers to the following questions?

@ Do different item selection algorithms perform differently for
various cut-points relative to the ability distribution?

® Do different item selection algorithms yield different average
test lengths for different groups of simulees?

© Can we decrease test length by considering ability as well as
the classification bound in CCT item selection?

@ Should we build tests by selecting items with difficulty
close to the classification bound?

Probably not. The most efficient tests would have items with a
(relatively) wide distribution of difficulties.
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Extensions
How can we better consider uncertainty in 6?

ELRJ(¢9|W,J):/ WUELRJ(Q)dG
€]

e Posterior ELR (or FI-middle)
* Wy =m0y ;1)

e Likelihood-weighted ELR (or FI-middle)
* wi=L(0lY;j_1)

How do these results generalize?

e Polytomous models

e Multidimensional models
e Alternative stopping rules
e Curtailment
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Thank You!
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