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Problems with Classification Testing

The problem in computerized classification testing (CCT):
How do we efficiently determine whether or not an
examinee exceeds some cut-point, θ0, in the fewest
number of items with a pre-specified accuracy rate?

This is usually thought of as a stopping-rule issue.

• Stopping rule? Directly affects accuracy and efficiency.
• Item selection algorithm? Mostly consensus.

• Select items at the cut-point separating categories.
• Fisher information, KL divergence, mutual information.



Preliminaries

Assume the following for the remainder:

1 Items fit the unidimensional 3PL IRT model.

pj(θi) = Pr(Yij = 1|θi,aj,bj, cj) = cj +
1− cj

1 + exp[−aj(θi − bj)]
,

2 Decisions are only mastery vs. non-mastery.
H0 : θi = θl = θ0 − δ

H1 : θi = θu = θ0 + δ,

3 Tests are variable-length with the SPRT decision rule.



The Sequential Probability Ratio Test
A commonly used stopping rule: The SPRT (e.g., Wald, 1947).

1 Determine simple statistical hypotheses (Eggen, 1999):
H0 : θi = θl = θ0 − δ

H1 : θi = θu = θ0 + δ,

2 Calculate log-likelhood ratio comparing the hypotheses.

log
[
LR(θu, θl|yi)

]
= log

[
L(θu|yi)
L(θl|yi)

]
3 End test if log-likelihood ratio exceeds threshold.

How should we select subsequent exam items?

• Common knowledge: At the cut-point (θ0).
• Are there alternative options?



Cut-Point Complications

Complication 1: Given a correct response, SPRT evidence
depends on the model asymptote (Nydick, 2014).

The maximum of the log-LR given a correct response:

θ̂0 =
log(cj)
2aj

+ bj.

1 If cj = 0, then more difficult items yield more evidence.
2 If cj > 0, then more difficult items can yield less evidence.

How can this inform which items to select?



Cut-Point Complications

Complication 2: The expected increase in SPRT evidence
depends on a person’s true ability (Nydick, 2014).

The Expected log-Likelihood Ratio (ELR):

E
[
log

[
LR(θu, θl|Yij)

]]
= pj(θi) log

[
pj(θu)
pj(θl)

]
+ [1− pj(θi)] log

[
1− pj(θu)
1− pj(θl)

]
.

1 The ELR indicates the expected increase in the SPRT.
2 The ELR is dependent entirely on the IRT model and
stopping rule.



Cut-Point Complications

Complication 2: The expected increase in SPRT evidence
depends on a person’s true ability (Nydick, 2014).

Which item maximizes the ELR?

• Assume fixed and constant a.
• Assume cj = 0 for all items.

Then given a small δ, we find that

lim
δ→0+

b̂ =
θ0 + θi

2
.

What would happen if we selected items at θ0+θ̂i
2 ?



Preliminary Simulation Method

Three item selection algorithms:

1 FI-bound (the “recommended” algorithm).
2 FI-ability (the “not-recommended” algorithm).
3 FI-middle (a new option).

Other specifications of this simulation:

• 10,000 simulees with θ ∼ N(0, 1).
• 750 size item bank according to the 2PL IRT Model
• Classification bounds at θ0 ∈ {−3,−2,−1, 0, 1, 2, 3}.

• Results aggregated across all simulees at a bound.



Preliminary Simulation Results: Length
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Preliminary Simulation Results: Length
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Preliminary Simulation Results: Length
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Preliminary Simulation Results: Accuracy
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Fixed Specifications

1 Latent Trait
• N = 10, 000
• θ ∼ N(µ = 0, σ = 1)

2 Classification Bounds
• θ0 ∈ {−3,−2,−1}
• θ0 = 0
• θ0 ∈ {+1,+2,+3}

3 Stopping Rules
• SPRT

• jmin = 5
• jmax = 200
• δ = 0.1
• α = β = .05



Item Banks and IRT Models
1 Size of Item Bank

• J = 750
• J = 1, 500

2 3PL IRT Model
• b-parameters

• b ∼ Unif(min = −4,max = 4) (Flat)
• b ∼ N(µ = 0, σ = 1.500) (Moderate)
• b ∼ N(µ = 0, σ = 0.707) (Peaked)

• c-parameters
• c = .25 (Fixed)
• c = .00 (None)
• c ∼ Beta(α = 19.8, β = 79.2) (Random)

• a-parameters
• a ∼ logN(µlog = 0.38, σlog = 0.25)



Item Selection Algorithms
1 FI-bound
2 FI-ability
3 FI-middle
4 KL-bound

• In paper only.
5 KL-estimated

• In paper only.

6 ELR
7 FI-ability-hybrid

• FI-ability until sθ̂i < .5.
• ELR for remainder of exam.

8 KL-estimated-hybrid
• In paper only.



Misc and Conditions Table

Conditions Table

Variable Number of Conditions
b 3 (Flat, Moderate, Peaked)
c 3 (None, Fixed, Random)
J 2 (750, 1, 500)
θ0 7 (−3,−2, . . . , 3)
Item Selection 8
Overall 1008



Overall (J = 750; c = .25): Length
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Overall (J = 750; c = .00): Length
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Conditional (J = 750; c = .25): Length
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Conditional (J = 750; c = .00): Length
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Summary of Results

What are the answers to the following questions?

1 Do different item selection algorithms perform differently
for various cut-points relative to the ability distribution?

2 Do different item selection algorithms yield different average
test lengths for different groups of simulees?

3 Can we decrease test length by considering ability as well as
the classification bound in CCT item selection?

4 Should we build tests by selecting items with difficulty close to
the classification bound?

Yes. Maximizing Fisher information based on the ability
estimate works worse if c > 0 and low θ0.
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What are the answers to the following questions?

1 Do different item selection algorithms perform differently for
various cut-points relative to the ability distribution?

2 Do different item selection algorithms yield different
average test lengths for different groups of simulees?

3 Can we decrease test length by considering ability as well as
the classification bound in CCT item selection?

4 Should we build tests by selecting items with difficulty close to
the classification bound?

Yes. Bound-based algorithms performed better near the
bound. Modified algorithms performed better elsewhere.



Summary of Results

What are the answers to the following questions?

1 Do different item selection algorithms perform differently for
various cut-points relative to the ability distribution?

2 Do different item selection algorithms yield different average
test lengths for different groups of simulees?

3 Can we decrease test length by considering ability as
well as the classification bound in CCT item selection?

4 Should we build tests by selecting items with difficulty close to
the classification bound?

Yes. ELR and FI-middle yielded the shortest tests for most
classification bounds, item banks, and simulees.



Summary of Results

What are the answers to the following questions?

1 Do different item selection algorithms perform differently for
various cut-points relative to the ability distribution?

2 Do different item selection algorithms yield different average
test lengths for different groups of simulees?

3 Can we decrease test length by considering ability as well as
the classification bound in CCT item selection?

4 Should we build tests by selecting items with difficulty
close to the classification bound?

Probably not. The most efficient tests would have items with a
(relatively) wide distribution of difficulties.



Extensions
How can we better consider uncertainty in θ?

ELRj(θ|wij) =

∫
Θ
wijELRj(θ)dθ

• Posterior ELR (or FI-middle)
• wij = π(θ|yi, j−1)

• Likelihood-weighted ELR (or FI-middle)
• wij = L(θ|yi, j−1)

How do these results generalize?

• Polytomous models
• Multidimensional models
• Alternative stopping rules
• Curtailment



Thank You!
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