
Running head: EXPECTED LIKELIHOOD RATIO IN CCT 1

The Expected Likelihood Ratio in Computerized Classification Testing

Steven W. Nydick

Pearson VUE

-

Author Note

Paper presented at the Annual Meeting of the National Council on Measurement in

Education (NCME) in Washington D.C., April 7–11, 2016.



EXPECTED LIKELIHOOD RATIO IN CCT 2

Abstract

The Sequential Probability Ratio Test (SPRT) is commonly used as a stopping rule for

computerized adaptive mastery tests (CMT). Many researchers claim that items should be

selected for CMT by maximizing Fisher information at the bound separating two

categories. In Nydick (2014), we demonstrated that the optimal location for item selection

in adaptive CMT depends on both the classification bound as well as the latent trait

underlying item responses. The Expected Likelihood Ratio (ELR) method of item selection,

which optimizes the SPRT-based likelihood ratio test statistic with respect to a person’s

current ability estimate, improved over standard cut-point based algorithms in terms of

average test length with little change in classification accuracy (for the limited conditions

tested in that paper). The current study extends Nydick (2014) to systematically compare

the ELR with alternative item selection algorithms using a wide variety of item parameter

banks as well as cut-points. Results from this simulation study support claims from Nydick

(2014): Item selection algorithms that considered both the cut-point as well as the ability

estimate performed better, in terms of average test length and without a loss in

classification accuracy, than algorithms that considered either piece of information alone.
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The Expected Likelihood Ratio in Computerized Classification Testing

Introduction

Computerized classification tests (CCT; e.g., Eggen, 1999) are computerized adaptive

tests (CAT; e.g., Weiss, 1982) that aim to accurately and efficiently assign examinees into

categories. Most research on CCT has focused on stopping rules. Commonly used stopping

rule algorithms include the confidence interval method (CI; e.g., Kingsbury & Weiss, and

also referred to as Sequential Bayes, e.g., Spray & Reckase, 1996) and the sequential

probability ratio test (SPRT; e.g., Eggen, 1999), although alternative methods have been

proposed to alleviate CI or SPRT inefficiencies (e.g., Finkelman, 2003; Huebner & Fina,

2015; Sie, Finkelman, Bartroff, & Thompson, 2014; Thompson, 2009).

The SPRT is a straightforward stopping rule taken from statistical decision theory

(Wald, 1947). Assume that we are conducting a sequence of identical experiments with

simple, point hypotheses about a parameter of interest. Moreover, assume that we have

fixed critical values, A and B, such that 0 < A < B <∞. After each step of the

experiment, we need to make a decision about whether either of the point hypotheses are

true or whether to perform another experiment and collect another observation. According

to the Wald-Wolfowitz theorem (Wald & Wolfowitz, 1948), the optimal test statistic (i.e.,

the test statistic the results in the least number of experiments/the smallest sample size

under either hypothesis and with the same Type I and Type II error rates) is the simple

likelihood ratio.

To define the SPRT in CCT, one only needs to define the null and alternative

hypotheses and specify critical regions. Let θ represent the latent ability variable modeled

by a unidimensional IRT model, and denote an instance of θ as θi. (θ can be thought of as

ability in general, whereas θi is a particular person’s ability.) Moreover, define a cut-point

on an exam as θ0. Then any stopping rule would seek to determine, after each question,

whether θi > θ0, θi < θ0, or whether not enough information has been collected from person

i to make a decision. Because the SPRT requires point hypotheses (instead of the general
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“somewhere above the cut-point”), let each hypothesis be determined by a point slightly

away from the cut-point. In other words, we can specify point hypotheses as

H0 : θi = θl = θ0 − δ

H1 : θi = θu = θ0 + δ,

where δ is a small constant.

After an examinee responds to a test item, the CAT algorithm compares the

likelihood of the sequence of responses for this examinee (to the current point in the test)

given H0 versus H1. Assuming responses to a set of test items are conditionally

independent, then the log-likelihood function for θ given response pattern yi is

log[L(θ|yi)] =
J∑
j=1

[
yij log[pj(θ)] + (1− yij) log[1− pj(θ)]

]
(1)

where yij is the (0, 1) response of examinee i to item j and pj(θ) is probability of yij = 1

given a value of θ (and defined by the IRT model). If testing the point hypotheses defined

above, then the log-likelihood ratio of an examinee having ability θu relative to θl is

log
[
LR(θu, θl|yi)

]
= log

[
L(θu|yi)
L(θl|yi)

]
= log

[
L(θu|yi)

]
− log

[
L(θl|yi)

]
. (2)

When Equation (2) is greater than log(B) or less than log(A), then the test is ended and

the appropriate hypothesis chosen. Otherwise, another item is given until maximum test

length. Typically A = [β/(1− α)] and B = [(1− β)/α], which results in Type I and Type

II error rates approximately α and β, respectively (e.g., Wald, 1945).

Regardless of whether the CI or SPRT methods are used to terminate a classification

test, most researchers assume that items should be selected with maximum information at

the bound separating categories (e.g., Eggen, 1999; Finkelman, 2008; Huebner, 2012). In

Nydick (2014), we demonstrated that “selecting items to maximize information at the
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classification bound is only a coarse approximation of the most efficient item selection

algorithm” with respect to the SPRT (p. 206). The next section summarizes the main

results from that paper. Based on these results, we explore a simulation study designed to

systematically test whether one can improve on the classic maximize information at the

cut-point item selection algorithm in SPRT-based classification tests.

Item Selection in Mastery Tests

Many researchers select items in CCT algorithms by maximizing information at the

cut-point separating categories. The main reasons for this particular recommendation is

intuitive and obvious. When maximizing information at the cut-point, the difficulty of

items will be close to the cut-point. Therefore, if a candidate answers a question correctly,

then that candidate is most likely in the region above the cut-point, and if the candidate

answers a question incorrectly, then that candidate is most likely in the region below the

cut-point. Unfortunately, at least with respect to the SPRT, this reasoning is not entirely

accurate. In Nydick (2014), we demonstrated that selecting items by considering both the

classification bound as well as the current ability estimate can improve on the standard

item selection algorithm. This section explains how an examinee’s estimated ability can

improve item selection in SPRT-based classification tests.

For simplicity, assume that we only have two categories separated by a cut-point, θ0,

and assume that all items conform to a unidimensional, binary three-parameter logistic

(3PL) model. Moreover, let θi be examinee i’s latent ability, and assume that all item

responses are conditionally independent given θi. Then we can represent the probability of

examinee i correctly responding to item j with the following item response function (IRF):

pj(θi) = Pr(Yij = 1|θi, aj, bj, cj) = cj + 1− cj
1 + exp[−Daj(θi − bj)]

, (3)

where bj determines the point of maximal slope, aj is proportional to the slope at θi = bj,

cj represents the lower asymptote, and D is a scaling constant. Because D is a scaling
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constant that does not affect model fit, we remove D from subsequent equations and define

aj as being implicitly multiplied by D. Common simplifications of Equation (3) include the

two-parameter logistic (2PL) model, where cj = 0 for all items, and the one-parameter

logistic (1PL) model, where aj = 1 for all items.

Now assume that examinee i has just taken an item conforming to Equation (3), and

we want to determine whether that examinee should be classified in the upper category

(e.g., θi = θ0 + δ), the examinee should be classified in the lower category (e.g., θi = θ0− δ),

or the examinee should be given another item. Then according to the SPRT, we will form

the log-likelihood ratio (comparing θ0 + δ to θ0 − δ) of all items to this point in the test

and determine whether that ratio is outside of our critical bounds. Based on Equation (1),

the log-likelihood ratio is summative under our assumptions, so we can determine the

incremental evidence of question j, which, of course, depends on the item response,

log
[
LR(θ0 + δ, θ0 − δ|yij)

]
= log

[
L(θ0 + δ|yij)
L(θ0 − δ|yij)

]

= yij log
[
pj(θ0 + δ)
pj(θ0 − δ)

]
+ (1− yij) log

[
1− pj(θ0 + δ)
1− pj(θ0 − δ)

]
. (4)

In Nydick (2014), we demonstrated that Equation (4) behaves differently for correct

versus incorrect answers, as long as cj > 0. One can see the difference by assuming a

correct or incorrect response and then determining the classification bound that provides

optimal evidence for classification. If yij = 0 (person i answers item j incorrectly), then

Equation (4) is monotonically decreasing with respect to θ0, so that higher cut-points

result in more incremental evidence for person i being in the lower category. This result

aligns with intuition: if an examinee is classified into the lower category given θ0 = 4 and

an incorrect response, that examinee should also be classified into the lower category given

θ0 = 10 or θ0 = 20 or θ0 = 256. Unfortunately, if yij = 1 (person i answers item j

correctly), then the behavior of Equation (4) does not necessarily accord with intuition.
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Assuming yij = 1, Equation (4) becomes

log
[
LR(θ0 + δ, θ0 − δ|yij = 1)

]
= log

[
pj(θ0 + δ)
pj(θ0 − δ)

]
= log[pj(θ0 + δ)]− log[pj(θ0 − δ)], (5)

and the maximum of Equation (5) with respect to θ0 is (see Equation 11 in Nydick, 2014)

θ̂0 = log(cj)
2aj

+ bj. (6)

If cj = 0, then the optimal classification bound does indeed approach negative infinity

(which is analogous to the incorrect response case). However, if cj > 0, then item j will

give optimal incremental evidence for classification if θ0 is just a bit below bj. For instance,

let cj = .25, so that item j represents the ideal, four choice multiple choice question. Then

when aj = 1, the optimal classification bound is approximately .69 below an item’s

difficulty. When aj = 2, then the optimal classification bound is only .35 below an item’s

difficulty. Therefore, if an examinee answers a question incorrectly, classification evidence

will always be stronger for higher classification bounds. However, if an examinee answers a

question correctly, then the classification evidence depends highly on the parameters of the

item. Although this result sounds counterintuitive, we explained (in Nydick, 2014) that it

is entirely a consequence of the SPRT test statistic being a simple likelihood ratio. If θ0 is

far below bj, then the likelihood ratio is essentially 0 because candidates both at θ0 + δ and

θ0 − δ will essentially answer question j at guessing, so that cj+ε1+ε2
cj+ε1 ≈ 1, where ε1 and ε2

are small constants indicating the incremental probability of examinees at ability θ0 − δ

(relative to −∞) and θ0 + δ (relative to θ0 − δ) answering the item correctly.

One problem with Equation (6) is the assumption of a correct response. Typically,

candidate responses are not known prior to actually administering an item. However, one

can also determine the optimal item to administer given an expected response to an item,
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EYij |θi

[
log
[
LR(θ0 + δ, θ0 − δ|Yij)

]]
= pj(θi) log

[
pj(θ0 + δ)
pj(θ0 − δ)

]
+ [1− pj(θi)] log

[
1− pj(θ0 + δ)
1− pj(θ0 − δ)

]
. (7)

Equation (7) does not depend on the actual response to an item but considers how

examinees might respond across many administrations given items of similar difficulty.

Note that Equation (7), or the Expected log-Likelihood Ratio (ELR), is equivalent to the

expectation of the SPRT test statistic. An item that optimizes Equation (7) would be

expected to contribute maximum evidence for classification. In Nydick (2014), we

demonstrated that under a few simplifying assumptions (including cj = 0, fixed and

constant aj, and δ approaching 0), the optimal item would have a difficulty of

lim
δ→0+

b̂ = θ0 + θi
2 . (8)

Therefore, the item providing the best evidence for classification would not have difficulty

close to the classification bound but approximately halfway between the classification

bound and a person’s actual ability.

To demonstrate the superiority of Equation (8), we constructed a fairly simple

simulation study using three item selection algorithms: maximize Fisher information at the

classification bound, maximize Fisher information at the current ability estimate, and

maximize Fisher information halfway between the classification bound and the current

ability estimate. Item parameters were selected from a bank of J = 750 items with bj

uniformly distributed between −4 and 4, aj distributed in the manner described in the

next section, and cj = 0. Note that this simulation study represents a select few conditions

of the broader simulation study described below. For a better understanding of the

manipulated conditions or the distributions therein, see this paper’s method section. Note

that N = 10, 000 simulees were generated such that θ ∼ N(0, 1).

Figure 1 indicates the average test length across N = 10, 000 simulees given seven
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Figure 1 . Average test length using an SPRT stopping rule with item selection algorithms
and classification bounds with items generated according to the 2PL IRT model. For each
combination of item selection algorithm and classification bound, test length was averaged
across N = 10, 000 simulees generated from a N(0, 1) distribution with a minimum test
length of jmin = 5 and a maximum test length of jmax = 200. For the SPRT stopping rule,
δ = .1 and α = β = .05.

different classification bounds. The classification bounds were applied separately, such that

individual simulations were run with each of the classification bounds, and the purpose of

the SPRT algorithm was to simply decide if a candidate did or did not exceed a cut-point.

Notice that FI-bound (i.e., maximizing information at the classification bound) and

FI-ability (i.e., maximizing information at the current ability estimate) performed similarly

with respect to average test length. Given a cut-point toward the middle of the

distribution, FI-bound resulted in an average test length slightly shorter than FI-ability:

the blue square is slightly below the purple circle for cut-points of θ ∈ {−1, 0, 1}. However,
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the differences between these two conditions are fairly minor. A major reason for their

similar performance is due to the missing lower asymptote. If cj > 0, then FI-bound should

perform much better than FI-ability, in terms of average test length, for extremely negative

θ0. Yet FI-middle (i.e., maximizing information halfway between the classification bound

and the current ability estimate) resulted in shorter tests than the other two conditions.

The difference between test length of FI-middle versus FI-bound or FI-ability ranged

anywhere from 5 items if θ0 = −3 or θ0 = 3 to 2 items if θ0 = 0. This simple combination

of two standard item selection algorithms resulted in shorter average tests across all

cut-points on tests without lower asymptotes, just as Equation (8) predicted.

Figure 2 indicates the percent misclassified across the conditions described above.

Note that the misclassification across given different item selection algorithms are

comparable, and FI-middle performed better than (given θ0 = 0) or at almost identically to

(for the other six classification bounds) the standard item selection algorithms. This simple

simulation reinforces the derivations from Nydick (2014), in that selecting items at

b ≈ θ0+θ̂i

2 resulted in a larger expected change in the SPRT test statistic (and, thus, a

shorter test) than selecting items at b ≈ θ0 or b ≈ θ̂i.

Unfortunately, FI-middle is based on Equation (8), which is an asymptotic result.

Therefore, this particular selection algorithm is only guaranteed to lead to relatively

efficient tests given models with cj = 0 and an SPRT routine with small δ. In Nydick

(2014), we demonstrated how the optimal item changes for candidates with ability above or

below the classification bound for various values of cj and δ. This demonstration led to the

proposal of an item selection algorithm for SPRT-based computerized mastery tests that

would retain optimality properties without requiring stringent assumptions, such as a

particular model or indifference region. Rather than maximize Fisher information halfway

between ability and the classification bound, one could simply optimize Equation (7), the

ELR. Because a person’s ability would never be known, one could replace θi in Equation

(7) with θ̂i. This ELR algorithm (Nydick, 2014, p. 215) would then choose subsequent
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Figure 2 . Percent misclassified using an SPRT stopping rule with item selection algorithms
and classification bounds with items generated according to the 2PL IRT model. For each
combination of item selection algorithm and classification bound, misclassification rate was
averaged across N = 10, 000 simulees generated from a N(0, 1) distribution with a
minimum test length of jmin = 5 and a maximum test length of jmax = 200. For the SPRT
stopping rule, δ = .1 and α = β = .05.

items by maximizing Equation (7) if θ̂i > θ0 and minimizing Equation (7) if θ̂i < θ0.

In Nydick (2014), we conducted several simulations to demonstrate the plausibility of

the ELR in choosing items for a SPRT-based classification test. However, the simulations

from that paper only demonstrated the possibility of improving on the standard

cut-point-based algorithms. They were not constructed to comprehensively test the

superiority of the ELR. Moreover, alternative item selection algorithms might be

constructed that also consider estimated ability as well as the cut-point in making

decisions. The purpose of this paper is to extend Nydick (2014) by comprehensively testing
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several item selection algorithms, including the ELR, in a simulation study. In the

remainder of this paper, we outline several novel algorithms that consider both the

cut-point as well as the ability estimate in choosing subsequent items. We then describe a

simulation study that compares the average test length and classification accuracy when

using these algorithms and explain implications of this simulation for developing item

selection algorithms for computerized classification tests.

Simulation Study

The current section describes a simulation study designed to compare the efficiency

and accuracy of the SPRT in classifying simulees when using a variety of item selection

algorithms, including the ELR. For all simulation conditions, the minimum exam length

was jmin = 5, and the maximum exam length was jmax = 200. Moreover, the simple SPRT

was used to classify simulees into one of two categories with δ = .1 and α = β = .05 (see

Equations 2 and 4). Finally, θ̂ (needed for some of the algorithms) was restricted to be

between θ̂ ∈ {−6, 6}. (θ̂ was set to the maximum or minimum of this range for non-mixed

response patterns.)

Person Parameter Generation

All simulation conditions contained the same N = 10, 000 simulees, such that

θ ∼ N(0, 1). The same simulees were used for all conditions to reduce some of the random

noise that can be generated given different groups of simulees. Response vectors were

always randomly and separately generated for each combination of conditions, even if the

simulees saw the same item bank.

Item Parameter Generation

All items were generated in accordance with the 3PL IRT model. Eighteen different

item banks were generated and administered to simulees. Conditions varied included the
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distribution of item difficulties, the distribution of item lower asymptotes, and the number

of items.

Item difficulties were randomly distributed based on three specifications: “flat”,

“moderate”, or “peaked”. If the item difficulty distribution was “flat”, then b-parameters

were generated from a uniform distribution with a minimum of −4 and a maximum of 4.

This distribution should result in a reasonable set of items for most simulees and is in line

with standard CAT recommendations (e.g., Weiss, 1982, p. 478). If the item difficulty

distribution was “moderate” or “peaked”, then b-parameters were generated from a normal

distribution with a mean of 0 and a standard deviation of 1.500 (if “moderate”) or 0.707 (if

“peaked”). The latter two distributions should result in fewer possible items for candidates

with extremely low or high values of θ.

Item lower asymptotes were either randomly distributed, set to 0.25, or set to 0.00.

Under the “random” condition, c-parameters were generated from a beta distribution with

c ∼ Beta(α = 19.8, β = 79.2). This distribution would result in c-parameters with a mean

of approximately .20, a standard deviation of approximately .04, and almost all values

contained between .10 and .30.

Item discriminations were always randomly generated from the log-normal

distribution with a ∼ logN(µlog = 0.38, σlog = 0.25) (which is similar to the distribution

used in Nydick, 2014).

For each combination of parameter conditions, two item banks were generated, one

with J = 750 items and one with J = 1, 500 items. These item banks remained constant

for all simulations containing them. In other words, given a particular combination of item

bank conditions (e.g., “flat” b, “random” c, and J = 750), one item bank was generated,

and that bank was used for all simulation conditions containing that set of item bank

conditions. As was the case in generating person parameters, keeping the item banks

constant for all sets of relevant conditions reduces nuisance variance and provides a better

base for comparing simulation results.
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Item Selection Algorithms

The simulation was designed to test various item selection algorithms, and we

incorporated eight algorithms in the simulation design, including three standard algorithms

(FI-bound, FI-ability, and KL-bound), two modified algorithms (FI-middle and

KL-estimated), one novel algorithm (ELR), and two hybrid algorithms (FI-ability-hybrid

and KL-estimated-hybrid).

FI-bound, FI-ability, and FI-middle selected items to maximize Fisher information

(which is the expected, negative, second derivative of the log-likelihood function and relates

to the asymptotic variance of the maximum likelihood estimator; see Efron & Hinkley,

1978). As described earlier, FI-bound chooses items to maximize information at the

classification bound, FI-ability chooses items to maximize information at the ability

estimate, and FI-middle chooses items to maximize information halfway between the

classification bound and the ability estimate.

In addition to Fisher information-based algorithms, several alternative item selection

algorithms have been proposed for adaptive classification tests (e.g., Eggen, 1999; Lin &

Spray, 2000; Weissman, 2007). One commonly-used alternative to Fisher information is

based on Kullback-Leibler (KL) divergence (Chang & Ying, 1996). KL-divergence

quantifies the expected loss when using an approximate model in lieu of the correct model

by means of a log-likelihood ratio. Most KL-divergence-based algorithms in CCT choose

the upper hypothesis (θ0 + δ) as the true distribution (e.g., Eggen, 1999), which results in

the following maximization function,

KLj(θ0 + δ||θ0 − δ) = EYij |θ0+δ

[
log

[
LR(θ0 + δ, θ0 − δ|Yij)

]]
= pj(θ0 + δ) log

[
pj(θ0 + δ)
pj(θ0 − δ)

]
+ [1− pj(θ0 + δ)] log

[
1− pj(θ0 + δ)
1− pj(θ0 − δ)

]
. (9)

Note that Equation (9) is similar to Equation (7) with θi replaced by θ0 + δ. A problem
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with the KL-bound algorithm is that KLj(θu||θl) assumes that all candidates are in the

upper region. One could construct an alternative algorithm by flipping θ0 + δ and θ0 − δ in

Equation (9) if an examinee’s ability estimate is below the classification bound. The

KL-bound algorithm chooses items to maximize Equation (9), whereas the KL-estimated

algorithm chooses items to maximize KLj(θu||θl) if θ̂i > θ0 and KLj(θl||θu) if θ̂i < θ0.

The hybrid algorithms consider that θ̂i is an imprecise estimate of θi. Therefore,

choosing items based on the ELR will be non-optimal as long as |θ̂i − θi| remains large.

The FI-ability-hybrid algorithm and KL-estimated-hybrid algorithm choose items based on

FI-ability or KL-estimated until the standard error of θ̂i is small enough, and then switch

to the ELR algorithm for the remainder of the CAT. In all cases, we applied a standard

error threshold (before switching to the ELR algorithm) of 0.5. A standard error of 0.5 is

large enough for the ELR to be applied relatively early in a test but small enough for the

coarse interval of θi to be mostly known.

Conditions

Ultimately, we included 18 item banks and 8 item selection algorithms. For each of

the 18× 8 = 144 bank by item selection algorithm conditions, we simulated computerized

classification tests for each of the N = 10, 000 simulees at each of

θ0 ∈ {−3,−2,−1, 0, 1, 2, 3} classification bounds, which resulted in a 144× 7 = 1008 total

bank × item selection algorithm × classification bound conditions. Given a condition, we

generated adaptive classification tests (using the global parameters) across the N = 10, 000

simulees and determined the average test length and classification accuracy for the simulee

group. The next section describes results from this simulation study.

Simulation Results

This section will be divided into two parts: presenting results aggregated across all

simulees within a particular condition, and presenting results for simulees with similar

values of θ. In all cases, only a select few results will be presented, entirely in graphical
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form. The full set of results (including graphs and tables) will be uploaded to

www.tc.umn.edu/~nydic001. Moreover, we calculated loss values (e.g., Finkelman, 2010)

as

Loss = P × IW + J, (10)

where Iw is an indicator function for an incorrect classification, J is the test length, and P

is a penalty applied to an incorrect classification. In most cases, and with P ∈ {100, 500},

loss did not indicate a different rank order than simply the average test length. Therefore,

we will use test length as a proxy for loss for the remainder of the document.

Aggregated Across All Simulees

Figure 3 presents the average test length deviance for each item selection algorithm

and classification bound from the item bank where J = 750, c = .25, and b uniformly

distributed between −4 and 4. The average test length deviance for a condition is simply

the difference between the average number of items administered given an item selection

algorithm and a classification bound and the median of the average number of items

administered across all item selection algorithms for that classification bound. The reason

that the deviance was chosen to describe average test length (rather than the

straightforward average test length) is that the average test length magnitude depends on

the classification bound. The average test length would be much larger for classification

bounds closer to θ = 0 than θ = 3 simply because more simulees are closer to θ = 0, and a

variable length classification test takes longer to make a decision if a simulee/examinee is

close to the classification bound. The deviance statistic removed the difference in location

across all θ0 and made the different conditions more comparable. The reason that the

median was chosen for the deviance rather than the mean is simply because several item

selection algorithms were expected to result in very large values for the average test length,

and the median is less susceptible to outliers.

www.tc.umn.edu/~nydic001
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Figure 3 . Average test length deviance using an SPRT stopping rule with item selection
algorithms and classification bounds with items generated according to the 3PL IRT model
with J = 750 items generated from a bank such that c = .25 and b uniformly distributed
between −4 and 4.

The results displayed in Figure 3 are almost archetypally similar to what one would

predict. First, the three algorithms that depend on maximizing Fisher information based

on the ability estimate (FI-ability, FI-middle, and FI-ability-hybrid) result in much longer

tests for very negative classification bounds, which is expected for item banks with positive

lower asymptotes. FI-ability and FI-middle perform so much worse than the other

conditions if θ0 << 3 that their average test length deviance is outside the range of the

y-axis on the graph. However, FI-middle performs just as well as the ELR item selection

algorithm if θ0 = 2 or θ0 = 3. For these classification bounds, most simulees are below the

classification bound, so the effect of the lower asymptote on the SPRT statistic is much
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less. In fact, all three item selection algorithms perform much better for θ0 = 3 than for

any of the other conditions.

Next, notice that KL-estimated (the grey circles) performs similarly to KL-bound

(the yellow triangles) for θ0 <= 0 but results in shorter tests than KL-bound for θ0 > 0.

The difference between the KL conditions is not dramatic. However, considering the

location of θi relative to θ0 does result in added efficiency, especially when most simulees

have true ability below the classification bound. Finally, look at the ELR condition and the

hybrid conditions. The ELR results in the shortest tests for most conditions, and

FI-ability-hybrid results in tests nearly as short for θ0 ≥ 0.
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Figure 4 . Average test length deviance using an SPRT stopping rule with item selection
algorithms and classification bounds with items generated according to the 2PL IRT model
with J = 750 items generated from a bank such that c = 0 and b uniformly distributed
between −4 and 4.
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Figure 4 displays the average test length deviances for the item bank similar to that

shown in Figure 3 (with J = 750 and b uniformly distributed between −4 and 4) but with

c = 0. Notice that the item selection algorithms perform much more similarly if c = 0 than

if c > 0. Because c = 0 in Figure 4, FI-ability is not penalized for high ability simulees

relative to the classification bound. Therefore, none of the lines have a dramatic leftward

increase in test length deviance, unlike the patterns shown in Figure 3. Interestingly,

although ELR performs better than most of the item selection algorithms (including all of

the standard algorithms) in terms of test length deviance, FI-middle performs almost

uniformly better than the ELR. Notice that the bright green triangles are always at least

as low as the dark blue circles.
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Figure 5 . Percent misclassified using an SPRT stopping rule with item selection algorithms
and classification bounds with items generated according to the 3PL IRT model with
J = 750 items generated from a bank such that c = .25 and b uniformly distributed
between −4 and 4.
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Figure 6 . Percent misclassified using an SPRT stopping rule with item selection algorithms
and classification bounds with items generated according to the 2PL IRT model with
J = 750 items generated from a bank such that c = 0 and b uniformly distributed between
−4 and 4.

Figures 5 and 6 display the misclassification rate for the conditions described by

Figures 3 and 4. Notice that the misclassification rates across all item selection algorithms

(for a given classification bound) are very similar: one finds little consistency in the relative

order of the item selection algorithms in terms of misclassification rate across the different

classification bounds. The item selection algorithms should not result in drastically

different misclassification rates, as they only determine the optimal item to administer and

not whether the test should end. The misclassification rate should depend almost entirely

on the stopping rule. Otherwise, the Type I and Type II errors would depend on the type

of evidence collected rather than simply the amount of evidence.
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Figure 7 . Average test length deviance using an SPRT stopping rule with item selection
algorithms and classification bounds with items generated according to the 3PL IRT model
with J = 1, 500 items generated from a bank such that c = .25 and b normally distributed
with a mean of 0 and a standard deviation of 0.707.

Figures 7 and 8 display average test length deviances for all of the item selection

algorithms at each of the classification bounds given an item bank with more items

(J = 1, 500) but a much narrower difficulty range (b ∼ N(µb = 0, σb = 0.707)). The

difference between Figures 7 and 8 is that in Figure 7, c = .25 for all items, and in Figure

8, c = 0. Notice that Figures 7 and 8 are similar to Figures 3 and 4 with a few exceptions.

For instance, given a peaked item bank, most of the item selection algorithms result in

tests lengths closer to the median test length than with a wider range of difficulties. This

result makes intuitive sense. If b is generated from a narrow range, fewer items will have

difficulties close to extreme values of θ regardless of whether selecting items to maximize



EXPECTED LIKELIHOOD RATIO IN CCT 22

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

● ●

●

θ0

A
ve

ra
ge

 T
es

t L
en

gt
h 

D
ev

ia
nc

e

−3 −2 −1 0 1 2 3

−10

−5

0

5

b = peaked; c = 0.00; size = 1500

●

●

●

●

FI−bound
FI−ability
FI−middle
KL−bound

KL−estimated
ELR
FI−ability−hybrid
KL−estimated−hybrid

Figure 8 . Average test length deviance using an SPRT stopping rule with item selection
algorithms and classification bounds with items generated according to the 2PL IRT model
with J = 1, 500 items generated from a bank such that c = 0 and b normally distributed
with a mean of 0 and a standard deviation of 0.707.

Fisher information at the ability estimate or the classification bound. Therefore, most of

the algorithms would result in similar items selected regardless of the objective function.

However, even though the algorithms result in more similar test lengths, the ELR still

performs better than almost all of the other item selection algorithms across all

classification bounds and both item banks. Only FI-middle ever results in shorter tests

than the ELR and only for banks without lower asymptotes.

Finally, Figures 9 and 10 display the misclassification rates for those conditions

represented by Figures 7 and 8. Unsurprisingly, the same pattern persists in Figures 9 and

10 as in Figures 5 and 6. That is to say, none of the misclassification rate graphs display
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Figure 9 . Percent misclassified using an SPRT stopping rule with item selection algorithms
and classification bounds with items generated according to the 3PL IRT model with
J = 1, 500 items generated from a bank such that c = .25 and b normally distributed with
a mean of 0 and a standard deviation of 0.707.

any noticeable pattern.

Of course, aggregate test lengths and misclassification rates only present part of the

pictures. One typically cares less about whether tests are typically shorter for all

candidates than whether tests are demonstrably shorter for any specific groups of

candidates. In the next section, we examine the test lengths for all of the item selection

bounds conditional on particular levels of θ. In this manner, we can determine whether the

ELR item selection algorithm gains advantage with candidates close to the cut-point,

candidates far from the cut-point, or across all ability levels.
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Figure 10 . Percent misclassified using an SPRT stopping rule with item selection
algorithms and classification bounds with items generated according to the 2PL IRT model
with J = 1, 500 items generated from a bank such that c = 0 and b normally distributed
with a mean of 0 and a standard deviation of 0.707.
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Conditional on Simulees with Similar θ
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Figure 11 . Average test length deviance using an SPRT stopping rule given various item
selection algorithms with items generated from four different populations and a
classification bound of θ0 = 0. In the upper quadrants, items were generated with J = 750
and b uniformly distributed between −4 and 4, and in the lower quadrants, items were
generated with J = 1, 500 and b normally distributed with a mean of 0 and a standard
deviation of 0.707. In the left quadrants, items were generated such that c = .25, and in
the right quadrants, items were generated such that c = 0. In all cases, test length was
aggregated across simulees within an ability range of .2

Figure 11 presents the average test length deviance conditional on various item

selection algorithm for the same four item banks described in the previous section but with
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a few caveats. First, in all cases, the classification bound represented by Figure 11 is

θ0 = 0, which is displayed by a dashed grey vertical line in the center of each plot. Second,

results are aggregated across all simulees with true ability within a limited range. The

cut-points of that range are entries in the following set:

{min(θi),−2,−1.8,−1.6, . . . ,−0.2, 0, 0.2, . . . 1.6, 1.8, 2,max(θi)}. These cut-points were

chosen to be large enough for averages to be calculated from a sufficient sample size

(between N = 125 and N = 800) yet small enough for conclusions to be drawn about

relatively narrow true ability regions.

All four quadrants of Figure 11 contain a fairly messy set of points. Lines interweave

and criss cross frequently. However, some patterns are consistent across all four plots.

First, FI-bound, which is often promoted as the optimal item selection algorithm for

classification tests, rarely results in the shortest or near shortest tests. Only for true ability

near the cut point does FI-bound outperform or almost outperform the other item selection

algorithms in terms of test length. More often, FI-bound, as represented by the light blue

squares, is at the median of item selection performance. Second, FI-ability performs poorly

for most simulees given an item bank with c = .25. Yet, as predicted based on Nydick

(2014), FI-ability results in much longer tests if θi > θ0 than if θi < θ0. Notice that ability

need not even be far above the cut-point for FI-ability to result in much longer tests than

the other item selection algorithms. Moreover, item selection algorithms based on choosing

items to maximize Fisher information given an ability estimate (such as FI-ability-hybrid

and FI-middle) also begin to result in longer tests if θi > θ0 and c = .25. Both the light

green triangle line and the red square line start to turn upward for high ability simulees in

the left quadrants.

The ELR item selection algorithm does not always seem to perform better than all

(or even most) item selection algorithms despite the overall conclusions drawn from the

previous section. For low ability simulees if c = .25, and for low and high ability simulees if

c = 0, FI-middle often results in shorter tests than the ELR, although the differences
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between those conditions are typically very small. Moreover, if |θi − θ0| is small, then the

ELR often performs worse than standard item selection algorithms, such as FI-bound or

KL-bound. One could argue that if θi = θ0 + 0.1, then KL-bound would actually be the

optimal item selection algorithm because then KL-bound would select items according to

the ELR with the expectation taken with respect to θi rather than θ̂i. The ELR should

always perform worse than algorithms that inadvertently know true ability, as the ELR

must always estimate θi. Therefore, one should not be shocked if KL-bound performs

optimally or nearly optimally for θi ≈ θ0 + δ. In nearly all of the quadrants, KL-bound, as

depicted by the yellow diamond, results in the shortest test for θi slightly above θ0 = 0. Yet

the ELR results in nearly the shortest tests for θi far above or far below the cut-point. In

all four quadrants, the dark blue circle line trends downward for more extreme θ intervals.

Presumably, for these simulees, the precision of the actual ability estimate is less important

than ability being within a reasonable range of truth. This observation will return when

proposing alternative item selection algorithms, based on the ELR, that take into

consideration the uncertainty of the ability estimate more subtly than simply waiting until

ability is sufficiently stable before using the ELR (such as FI-ability-hybrid).

Conclusion

Psychometricians continue to recommend selecting items for mastery tests at the

cut-point separating categories (e.g., Huebner & Li, 2012). This recommendation has been

made regardless of stopping rule used and without providing but a passing reference to

other researchers (such as Spray & Reckase, 1994, as cited in each of Finkelman, 2008, or

van Groen, Eggen, & Veldkamp, 2014, or Thompson, 2009). In Nydick (2014), we pointed

out that even when using stopping rules that ignore θ̂i (such as the SPRT), “some

relationship always exists between item responses, item parameters, and the log-likelihood

ratio, so that estimates of ability ultimately anticipate future item responses and, thus, aid

classification.” (p. 223). The ELR item selection algorithm was designed to approximate
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how examinees might respond to the next item and to ensure that the item selected would

optimize the information available in this expected response. And for most of the

conditions described above, the ELR was either the most optimal or nearly the most

optimal algorithm in terms of average test length. Only for simulees near the cut-score or if

the item response model did not include a lower asymptote did other algorithms result in

shorter tests than the ELR. And even in the latter case, if c = 0 for all items, the only

algorithm that outperformed the ELR was an algorithm that was derived from the ELR for

this special case.

Although we demonstrated that the ELR essentially reduces to FI-middle in the case

of c = 0, one might still want to verify how items are chosen given different item selection

algorithms. To this end, a small simulation was run to show the location of the item

difficulty parameter (b) under four different item selection algorithms for models with c = 0

or c = .25 and for persons above and below the cut-point of θ0 = 0. Items were selected

from a very large bank of J = 10, 000 items, all with a = 1 and c dependent on the

particular condition. The reason for setting a = 1 is because the item that maximizes

Fisher information depends on both the location of the item (b) as well as the relationship

between the item response and the underlying trait (a). By setting a = 1, we simply

remove the nuisance variance of the latter and can better determine where items are being

selected under different rules. The item bank was constructed to be very large so that a

nearly optimal item could always be chosen regardless of rule or θ̂.

Figures 12 and 13 indicate the location of item selection under four of the item

selection algorithms if c = 0 and θi = −2 (Figure 12) or θi = 2 (Figure 13). In all graphs,

the cut-point is represented by a dashed grey line, and true ability is indicated by a dotted

blue line. The person ability estimate after each item in the CAT, θ̂i, is represented by a

golden line, and the corresponding item difficulty (of the next item chosen), b, is depicted

as a purple line. Note that Figures 12 and 13 depict items as one would expect. If using

FI-bound, the location of b is always along the cut-point (the variability of b for larger j



EXPECTED LIKELIHOOD RATIO IN CCT 29

only due to fewer available items close to that location). If using FI-ability, the location of

b tracks the ability estimate. And if using FI-middle or the ELR, the location of b is

essentially halfway between the classification bound and the ability estimate. The latter

point, that the b-parameter that optimizes the ELR was close to halfway between θi and

θ0, was part of the justification for using FI-middle as an item selection algorithm in cases

where c = 0.

Figures 14 and 15 indicate the location of item selection under the four algorithms

described above if c = .25 for all items. For three of the four algorithms, the relative

location of b does not depend on whether θi > 0 or θi < 0. FI-bound always selects items

with b-parameter slightly below the classification bound, FI-ability always selects items

with b-parameter slightly below the current ability estimate, and FI-middle always selects

items slightly below halfway between θ̂i and θ0. The reason that all of these algorithms

select items slightly below their target θ is due to properties of the Fisher information

function if c > 0 (e.g., Chang & Ying, 2009, Equation 4.2, p. 1478). In contrast to the

standard algorithms, the ELR item selection location depends on whether θi > 0 or θi < 0.

If θi < 0, then the ELR behaves similarly to FI-middle, as shown in the bottom two

quadrants of Figure 14 and as demonstrated based on the average test lengths depicted in

the previous section. However, if θi > 0, then the ELR adjusts the location of item

selection to better account for how item difficulties affect the SPRT statistic. Without a

lower asymptote or if θi < θ0, the optimal item would be selected to best confirm our

suspicions, that is, to be as difficult as possible while still having a high probability of

being answered correctly (if θ̂i > θ0) or as easy as possible while still having a high

probability of being answered incorrectly (if θ̂i < θ0). But if c > 0, then items selected with

b >> θ0 will result in a likelihood ratio close to 1 regardless of item response. Therefore,

the optimal θ̂i > θ0 item for models with c > 0 would be difficult enough to challenge the

current candidate while also being easy enough so that a candidate at θi = θ0 + δ would

have a non-negligibly larger than guessing change of answering the item correctly.
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Based on the previous section, the ELR item selection algorithm did not result in the

shortest test length in several scenarios, including if θ0 = 0. Note that if θ0 = 0, then the

typical examinee would be close to the classification bound. In this case, algorithms that

select items close to the classification bound without considering the current ability

estimate (such as FI-bound or the KL-based algorithms) would be selecting items almost

optimally for most of the simulees. The ELR, which requires an estimate of ability, could

include an estimate of θ̂i far from θi early in a test, which could lead the ELR to be less

than optimal. As was shown when presenting results conditional on a particular range of

θi, classification-bound-based algorithms, such as FI-bound or KL-bound, only

outperformed the ELR when |θi − θ0| ≈ 0. For these examinees, selecting items at the

classification bound would be a better approximation to the ELR than the ELR itself. We

tried to include algorithms that considered the uncertainty of the ability estimate early in a

classification test, such as initially selecting items by maximizing Fisher information close

to the ability estimate and then switching to the ELR once the ability estimate was

reasonably precise. Unfortunately, this method is somewhat ad hoc, in that the SEM

required before the algorithm would transition to the ELR was arbitrarily selected, and

any benefits of the ELR would not commence until the transition. One could directly

consider the uncertainty on θ̂i by maximizing the posterior ELR (e.g., Veerkamp & Berger,

1997, which they applied to Fisher information at θ̂i in the case of a precision CAT),

ELRj(θ|π(θ|yi,j−1)) =
∫

Θ
π(θ|yi,j−1)ELRj(θ)dθ, (11)

where ELRj is defined by Equation (7), π(θ|yi,j−1) is the posterior distribution of θ given

responses by person i to the first j − 1 items on the CAT, and Θ is the region of

integration. Maximizing the posterior ELR could reduce the inefficiency in the ELR for

examinees with true ability close to the cut-score by limiting the effect of random noise in

the ability estimate on the items selected early in a test.

The current research is limited by the narrow set of IRT models, decision rules, and
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number of cut-points. One could imagine that the optimality of the ELR (or even

FI-middle) would generalize to unidimensional, polytomous IRT models, such as the

graded response model (Samejima, 1996) or the generalized partial credit model (Muraki,

1996). However, only future research could demonstrate the generalizability of the

derivations (from Nydick, 2014) or simulations (in this paper) to alternate IRT models.

Moreover, many stopping rules exist for CCT, including the Generalized Likelihood Ratio

(GLR; Thompson, 2009), the SPRT with Stochastic Curtailment (SCSPRT; Finkelman,

2008), the GLR with Stochastic Curtailment (SCGLR; Huebner & Fina, 2014), the

Confidence Interval method (CI; Kingsbury & Weiss), and variations on Bayesian decision

rules (e.g., Lewis & Shehan, 1990). Several of the algorithms (such as the GLR) are based

on the likelihood ratio, so generalizing the ELR to these methods would be a

straightforward extension of the original equations. However, other methods have different

objective functions and would require new theory and alternate, optimal item selection

algorithms. The point of this research is not to promote the ELR as the best item selection

algorithm for variable length classification tests. The purpose of this paper is, instead, to

argue that if maximal efficiency is paramount when designing an adaptive test, then an

item selection algorithm should be chosen with the stopping rule in mind.

Many researchers still select items in classification testing by maximizing information

at the classification bound (e.g., Smits & Finkelman, 2013; Haring, 2014, pp. 46, 84).

Recently, Wyse and Babcock (2016) demonstrated that selecting items by maximizing

information at the cut-point does not always maximize classification accuracy for

fixed-length adaptive tests. In their study, they examined group level results across various

item banks and examinee distributions. Only if the examinee ability distribution had a

mean close to the cut-score or as the test length became large did the optimal item

selection location become approximately at the classification bound. For most other cases,

the optimal location to select items depended on the examinee distribution. If θ̄ > θ0,

items should typically be selected above the cut-score, and if θ̄ < θ0, then items should
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typically be selected below the cut score. Although their study adopted a fixed length test

rather than a variable length test using the SPRT, varied the distribution of simulees

rather than the classification bound, and examined the classification accuracy/consistency

rather than the decision efficiency, they still arrived at a similar conclusion to the one in

this paper. That is, information about a simulee’s location relative to a classification

bound depends on both the simulee as well as the bound. Ignoring the simulee or the

classification bound when choosing an item limits being able to quantify the knowledge one

might obtain from the next item, and, thus, reduces the potential efficiency of the test.
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Figure 12 . Item difficulty (b-parameter) selected after each item given a fixed length test
with jmax = 150 and an item bank with a = 1 and c = 0 for all items. The true person
parameter, θi, was set to −2, and the classification bound, θ0, was set to 0. The upper left
and right quadrants are FI-bound and FI-middle, and the lower left and right quadrants
are FI-middle and the ELR algorithm.
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Figure 13 . Item difficulty (b-parameter) selected after each item given a fixed length test
with jmax = 150 and an item bank with a = 1 and c = 0 for all items. The true person
parameter, θi, was set to 2, and the classification bound, θ0, was set to 0. The upper left
and right quadrants are FI-bound and FI-middle, and the lower left and right quadrants
are FI-middle and the ELR algorithm.
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Figure 14 . Item difficulty (b-parameter) selected after each item given a fixed length test
with jmax = 150 and an item bank with a = 1 and c = .25 for all items. The true person
parameter, θi, was set to −2, and the classification bound, θ0, was set to 0. The upper left
and right quadrants are FI-bound and FI-middle, and the lower left and right quadrants
are FI-middle and the ELR algorithm.
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Figure 15 . Item difficulty (b-parameter) selected after each item given a fixed length test
with jmax = 150 and an item bank with a = 1 and c = .25 for all items. The true person
parameter, θi, was set to 2, and the classification bound, θ0, was set to 0. The upper left
and right quadrants are FI-bound and FI-middle, and the lower left and right quadrants
are FI-middle and the ELR algorithm.
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