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Abstract

Growth models have generally fallen into two camps: (1) longitudinal item response

theory models; and (2) latent growth curve models. Psychometricians recently combined

both models into a multilevel model with categorical outcomes, multiple latent traits at

several time points, and individual growth parameters. The current study examines an

extension of multilevel IRT growth to hierarchical IRT models using the SEM formulation.

Conditions varied include correlation between latent traits, items loading on each

dimension, and number of simulees. For each condition, item, person, and growth

parameters are compared when using one of several model formulations or estimation

algorithms. Mplus code is provided.
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Measuring Multidimensional Growth–A Higher-Order IRT Perspective

Introduction

Recently, the federal government instituted a program entitled “Race to the Top” to

encourage schools to “build data systems that measure student growth and success” (U.S.

Department of Education, 2009, p. 2). The easiest method of estimating growth,

comparing raw test scores before and after a period of learning, has been criticized by

psychometricians as unreliable (e.g., Cronbach & Furby, 1970; Kim-Kang & Weiss, 2008).

Researchers have developed models to account for the unreliability of raw scores by

positing a latent trait imperfectly measured by observable phenomena that changes over

time. These “growth” models have, until recently, fallen into two camps: (1) longitudinal

item response theory (IRT) models (e.g., Andersen, 1985; Embretson, 1991; von Davier,

Xu, & Carstensen); and (2) latent growth curve models (e.g., Bollen & Curran, 2006;

Duncan, Duncan, & Strycker, 2006; Hancock & Lawrence, 2006). Item response theory

directly models latent growth through a set of ordinal variables, such as responses to test

items, but cannot easily account for varying growth structures or data collection methods.

Latent growth curve (LGC) methods separate the measurement and growth parts of a

model but do not easily consider ordinal outcome variables.

Recent work on measuring academic growth has combined the IRT measurement

model with the LGC second level growth model (e.g., McArdle, 1988) and extended the

assessment of growth to multidimensional IRT models (e.g., Hsieh, von Eye, & Maier,

2010). Multidimensional IRT models posit that item responses are probabilistically

determined by multiple, possibly correlated, latent traits. Unfortunately, neither

unidimensional nor multidimensional IRT models adequately capture the higher-order

nature of learning, whereby general ability (such as math aptitude) informs domain-specific

abilities (such as algebra, geometry, calculus, or subsets thereof). Unidimensional IRT

models measure an overall trait but ignore the sub-traits, whereas multidimensional IRT

models ignore the overall trait. To circumvent limitations of prior models, de la Torre and
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Song (2009) proposed a higher-order item response theory model (HO-IRT) that captures

the overall and domain-specific abilities required in formative learning. By positing a

higher-order structure, the HO-IRT model has been shown to measure domain abilities and

estimate item parameters better than the typical multidimensional IRT model. The

objective of this study is to propose a new IRT model for measuring growth by combining

the HO-IRT measurement model with the latent growth curve structure and to compare

the multilevel formulation with standard multidimensional IRT models in capturing

underlying, domain-specific abilities. Each model was estimated using the SEM

formulation (Múthen & Múthen, 1998–2012), and corresponding Mplus code is provided.

Growth Models in IRT

Measurements of ability and achievement should always be tailored to the goals of an

assessment. If determining overall ability at the end of an instructional program, such as

knowing whether someone is competent to practice medicine, then practitioners would

construct a summative assessment. Summative assessments are designed to adequately

measure one or more broad domains of knowledge, such as surgical ability, patient care, or

biological knowledge. In contrast to summative assessments, formative assessments provide

feedback throughout the instructional period. Because formative assessments are generally

used to inform instructional decisions, these assessments should adequately measure

finer-grained, domain-specific abilities in addition to overall knowledge.

Formative assessments assume a hierarchical structure to knowledge and thus require

a hierarchical measurement model. To this end, the higher-order IRT (HO-IRT) model was

developed to improve the reliability of numerous sub-scores by introducing a higher-order

overall score (de la Torre & Song, 2009). Psychometricians can use the HO-IRT model to

simultaneously estimate item parameters, overall ability, and domain-specific abilities. de

la Torre and Hong (2010) demonstrated that the HO-IRT model estimates item parameters

more accurately than either unidimensional or single-level multidimensional IRT models.
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The simplest HO-IRT model contains two levels: (1) a link between a single overall ability

and one of several domain abilities; and (2) a probabilistic relationship between each

domain abilities and items designed to measure only one domain. Specifically, let θ

represent the overall ability underlying responses to test items and ξ represent the

higher-order trait. Then one can hypothesize that

θik = λkξi + εik (1)

where ξi is the overall ability of examinee i, θik represents domain-specific ability

k ∈ {1, . . . , K} for examinee i, and λk indicates the relationship between domain-specific

ability and overall ability. Moreover, the probability of examinee i correctly responding to

item j on domain k is defined by the following item response function (IRF):

pjkj
(θik) = Pr(Yijkj

|θik, ajkj
, bj, cj) = cj + 1− cj

1 + exp[−ajkj
(θik − bj)]

, (2)

where ajkj
, bj, and cj represent the discrimination, difficulty, and pseudo-guessing

parameters of the jth item measuring the kth domain.

Extending the HO-IRT model across several time points allows one to detect

individual growth by modeling change in the higher-order trait, a principal goal of

formative assessment. The general framework for extending the HO-IRT model across

several time points is relatively simple. First, propose a set of abilities for each person

across all time points, which one can organize in matrix form:

Γi =



ξ
(1)
i θ

(1)
i1 θ

(1)
i2 · · · θ

(1)
iK

ξ
(2)
i θ

(2)
i1 θ

(2)
i2 · · · θ

(2)
iK

... ... ... . . . ...

ξ
(T )
i θ

(T )
i1 θ

(T )
i2 · · · θ

(T )
iK


Second, administer a set of items to each person at each time point that satisfy
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parameter identifiability assumptions. Finally, use a model-based estimation method, such

as MCMC or EM, to estimate unknown item parameters, estimate person parameters, and

determine change. Note that the above ability matrix might be sparse due to some

domain-specific abilities only manifesting, and thus being linked to the overall ability, at

certain ages. For instance, fractional subtraction ability might not appear until grade 4 or

5 due to students theretofore not learning those skills.

One could facilitate estimation of a longitudinal HO-IRT model by positing a growth

trajectory at either the domain or the general ability levels. Because domain abilities relate

to the general ability, they would also be carried along by any growth in the general ability.

Assume that a person-specific linear relationship exists between time and general ability.

Then the general ability for person i at time-point t, ξ(t)
i , can be written as a deviation

from the person-specific regression line,

ξ
(t)
i = π0i + π1i × (t− 1) + δ

(t)
i . (3)

These individual intercept and slope parameters can be written as deviations from the

overall average intercepts and slopes, or

π0i = β0 + ν0i (4)

π1i = β1 + ν1i. (5)

Given ξ(t)
i = π0i + π1i × (t− 1) + δ

(t)
i , a domain-specific ability for person i at time-point t,

θ
(t)
ik , would be predicted to systematically change over time,
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θ
(t)
ik = λkξ

(t)
i + ε

(t)
ik = λk(π0i + π1i × (t− 1) + δ

(t)
i ) + ε

(t)
ik

= λkπ0i + λkπ1i × (t− 1) + (λkδ(t)
i + ε

(t)
ik )

= ζ0ki + ζ1ki × (t− 1) + υ
(t)
ik . (6)

Domain abilities relate to individual items by the item response model described in

Equation (2) (with θ(t)
ik replacing θik and potentially unique items/item parameters at each

time-point). Note that the model described in Equations (3)–(6) is restrictive in that

domain-specific abilities are only purported to systematically grow via their relationship to

the general ability. In the next section, we describe a study designed to determine the most

efficient and accurate method of estimating the longitudinal HO-IRT model using popular

Mplus software.

Methods and Data

The current study explores Mplus estimation of a longitudinal version of the HO-IRT

model in an extensive simulation study. This simulation consisted of testing how Mplus

recaptured parameters from two longitudinal models, one with T = 2 time points, and one

with T = 4 time points. The generation of simulees and parameters for each model are

slightly different and will be separately explained.

Conditions

We performed two simulations, one with T = 2 and one with T = 4. Each simulation

assumed that simulees had a higher-order ability parameter that changed over time and

related (via factor analysis) to several lower-order abilities. These lower-order abilities were

then used to predict responses to items via multidimensional item response theory.

For the T = 2 simulation, we varied sample size (N ∈ {250, 1000}), total number of

items loading on each dimension (Jk ∈ {10, 20}), total number of dimensions (K ∈ {3, 5}),
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the correlation between higher-order person parameters (r ∈ {.50, .75}, and the loading of

the higher-order person parameter on all of the lower-order person parameters

(λ ∈ {.8, .9}).

For the T = 4 simulation, we varied the exact same conditions as when T = 2, but we

imposed a linear form on higher-order growth rather than assuming that higher-order

person parameters correlated a particular amount.

In either case, we simulated R = 25 replications for each of the 32 conditions (if

T = 2) or 16 conditions (if T = 4) and aggregated results (using the median rather than

the mean) across the replications.

Item Parameter Generation

For all simulations, item parameters were generated according to the two-parameter,

compensatory, multidimensional IRT model with K dimensions and assuming simple

structure. That is, we assumed that the IRT model was of the form

pjkj
(θik) = Pr(Yijkj

|θik, ajkj
, bj) = 1

1 + exp[−ajkj
(θik − bj)]

, (7)

where kj indicates the dimension on which item j loads, ajkj
represents the corresponding

discrimination parameter, and bj denotes the item difficulty. If parameterizing the model

with threshold rather than difficulty, simply set dj = −ajkj
bj. Due to simple structure, if Jk

items loaded onto each dimension, then the total number of items would be J = Jk ×K.

The reason that we used a two-parameter rather than three-parameter IRT model is

because Mplus cannot currently estimate the lower-asymptote of Equation (2). Moreover,

different parameter sets were generated for every single replication within condition.

Person Parameter Generation

Person parameters were generated somewhat differently for each simulation and will

thus be separately explained in the following subsections.
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T = 2. Let ξ(t)
i be the ith persons higher-order ability parameter at time point t.

Then ξi = [ξ(1)
i , ξ

(2)
i ]T ∼ N

(
µξ = [0.0, 0.3]T ,Σξ = [ 1 r

r 1 ]
)
. Next, let θ(t)

ik be the ith persons

lower-order ability parameter for dimension k at time point t. Then θ(t)
ik = λξ

(t)
i + ε

(t)
ik ,

where ε(t)ik ∼ N(µε = 0.0, σ2
ε = 1− λ2). Notice that this data generation method had each

lower-order person parameter at time t relate identically to the corresponding higher-order

person parameter. Moreover, these relationships were not assumed to change over time.

T = 4. For the T = 4 simulation, we first simulated a set of linear model

parameters, π0 and π1, and then used the linear parameters to generate higher-order

abilities. The intercept parameter, π0, was generated to be normally distributed with mean

µπ0 = 0.0 and variance σ2
π0 = 0.5. The slope parameter, π1, was generated to be normally

distributed with mean µπ1 = 0.25 and variance σ2
π1 = 0.01. Given π0i and π1i for person i,

higher-order person parameters were then set to

ξit = π0i + π1i × (t− 1) + δit,

where δit ∼ N(µδ = 0.0, σ2
δ = 0.10). Given a set of higher-order person parameters,

lower-order parameters were then generated using exactly the same algorithm as in the

T = 2 simulation.

Overall Simulation

For each simulation, we generated a response matrix of size N × (JT ), where each

item was taken by each simulee across all time points. Responses were generated by

determining the probability of a correct response using Equation (7) and then setting the

response equal to 1 if a random uniform deviate was less than that probability and 0

otherwise. Given a particular condition, a script was then generated so that Mplus could

estimate each model using the response matrix. The Mplus code was specified somewhat

differently for each simulation. In all cases, we used Mplus’s MONTECARLO integration

routine for the robust maximum likelihood estimator.
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T = 2. For the T = 2 simulation, we estimated item and person parameters in two

steps. We first jointly estimated item and person parameters across all time points and

then separately estimated item and person parameters at each time point and linked them

to the first time point using methods discussed in a different document. The following

Mplus code indicates some of the important assumptions for the joint calibration in the

MODEL section of the Mplus script given K = 3 (although see Appendix B for a complete

example Mplus script that we used).

xi1 BY th1_1-th3_1*.8 (lamb);
xi2 BY th1_2-th3_2*.8 (lamb);
[th1_1-th3_1@0];
[th1_2-th3_2*0.2];
th1_1-th3_1@.5 th1_2-th3_2@.5;
[xi1@0];
[xi2*0.5];
xi1@1;
xi2*1;
xi1-xi2 WITH xi1-xi2;

That is, we assumed that the higher-order person parameter at each time point loaded

onto all corresponding lower-order person parameters with one loading, λ, which we

initialized to .8 for each dimension. Moreover, we assumed that the mean of higher-order

and lower-order person parameters at the first time point was equal to 0, but we let the

mean of higher-order and lower-order person parameters at the second time point vary.

Finally, the variance of domain person parameters was set to 0 for all t ∈ {1, 2} and

k ∈ {1, 2, 3, 4, 5}, the variance of higher-order person parameters was set to 1 for t = 1, and

the remaining parameters were free to vary.

The separate calibrations were very similar to the joint calibration with a few

exceptions. The following Mplus code indicates some of the important assumptions for

each separate calibration in the MODEL section of the Mplus script given K = 3 (although

see Appendix C for a complete example Mplus script that we used).
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xi1 BY th1_1-th3_1*.8 (lamb);
[th1_1-th3_1@0];
th1_1-th3_1@.5;
[xi1@0];
xi1@1;

Thus, for the separate calibration, we fixed all of the person parameter means and

variances and assumed that the higher-order person parameter loaded onto the lower-order

person parameters with one loading, λ, which we initialized to .8. Unlike the joint

calibration, we could not constrain all of the separately calibrated loadings to be the same.

We then linked parameters from t = 2 to the scale of parameters from t = 1 using a

standard IRT linking method (described in Appendix A).

T = 4. For the T = 4 simulation, we simply separately estimated item and person

parameters at each time point (using the specifications of the previous subsection) and

then linked them onto the first time point using methods discussed Appendix. We then

estimated π0 and π1 for each person using the lme4 (Bates, Maechler, Boker, & Walker,

2013) package in R (R Core Team, 2013). Specifically, we ran the model

lmer( xi ~ time + (time | person) )

where xi represents a higher-order person parameter and can be predicted given a fixed

effect of time and a random effect of time for each person. The intercept and slope per

person was then simply set to the sum of the fixed effects across all people and the random

effect of intercept and slope for that person.

Simulation Results

T = 2

This section briefly presents results for the conditions when T = 2. For all of the

tables presented in this section, we calculated the Mean Squared Error (MSE) and

correlation between generated and estimated person parameters and then aggregated
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statistics within a desired condition.1 We chose only to display results for person

parameters and for those conditions with K = 3. These choices were made to simplify

presentation. A full set of results are available in an online appendix at

http://www.tc.umn.edu/~nydic001/.

INSERT TABLE 1 ABOUT HERE

Table 1 displays the average MSE for different correlation conditions. Correlation in

this case simply refers to the specified correlation between ξ(1) and ξ(2). The first two rows

of Table 1 indicate the average MSE for those conditions calibrated using a combined

method, whereas the bottom two rows of Table 1 indicate the average MSE when

parameters were separately calibrated at each time point. When using the combined

calibration method, the MSE is typically smaller across person parameters if r = .75 as

compared to r = .50. This difference is most dramatic for the higher-order parameters than

the lower-order parameters. If separately calibrating conditions at each time point, then

increasing the correlation between ξ(1) and ξ(2) actually results in a slight increase in the

MSE for all estimated person parameters. Yet, despite the noticeable, systematic trends,

differences between conditions are rather slight.

INSERT TABLE 2 ABOUT HERE

Results from Table 1 are reinforced by those presented in Table 2, which displays the

average correlation between true and estimated person parameters for different correlation

conditions. The correlation between true and estimated person parameters is slightly

higher, on average, if r = .75 as compared to r = .50 when using combined calibration, and

the correlation between true and estimated person parameters is slightly higher when using

combined calibration rather than separate calibration. However, few people would consider

a .01 difference between conditions meaningful in any sense.
1Technically, we calculated the MSE using the equation

∑
(γ̂−γ)2

N , where γ is the desired parameter, which
is estimated by γ̂, and summation was taken across the entire sample of N simulees. These statistics were
then aggregated, using the median rather than the mean, across the set of 25 replications and then averaged
across the desired conditions.

http://www.tc.umn.edu/~nydic001/
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INSERT TABLE 3 ABOUT HERE

INSERT TABLE 4 ABOUT HERE

Tables 3 and 4 present the average MSE and correlation, respectively, when

aggregating across the pre-specified factor loading, λ. Notice that when λ = .90, then the

correlation is slightly improved for all person parameters as compared to λ = .80, whereas

the MSE is improved for the higher-order trait (ξ) but worsened for the lower-order trait

(θ). However, the difference between combined and separate calibrations are, as before,

rather slight. Unsurprisingly, using a combined calibration method results in slightly

smaller MSE (and larger correlations) when comparing true and estimated person

parameters. But this difference is often only in the third decimal place.

INSERT TABLE 5 ABOUT HERE

INSERT TABLE 6 ABOUT HERE

The final set of tables, Tables 5 and 6, indicate the MSE and correlation (when

comparing true and estimated person parameters) if aggregating among items within

dimension. Recall that we generated items with between-item multidimensionality, in that

any item could only load on one dimension. If JK = 10, then each θk is measured by a total

of 10 items unique to that particular trait. If JK = 20, then all person parameters are

better estimated than when JK = 10. This finding is unremarkable. When more items load

onto a given dimension, one should be able to better estimate the corresponding trait. Yet

as before, joint calibration did not drastically improve the estimation accuracy. And this

slight improvement certainly does not justify the additional computing time (sometimes on

the order of hours for joint calibration rather than minutes for separate calibrations) of

Mplus. Results from those conditions with T = 2 and K = 5 are similar to those presented

when K = 3, and, thus, will not be presented in this section. However, anyone seeking a

full set of results should see http://www.tc.umn.edu/~nydic001/.

http://www.tc.umn.edu/~nydic001/


MULTIDIMENSIONAL GROWTH IN IRT 14

The next section presents the MSE and correlation between true and estimated

person parameters when generating data to fit a linear model with T = 4. Because the

joint calibration did not improve the precision of parameter estimates, we chose to estimate

all conditions separately at each time point and then link parameters at T ≥ 2 back to the

estimated parameters at T = 1 using the methods described in Appendix A.

T = 4

This section briefly presents results for the conditions when T = 4. In contrast to the

previous section, results from this section are only presented in graphical form. This

decision was made to ease interpretation. A full set of results are available in an online

appendix at http://www.tc.umn.edu/~nydic001/.

INSERT TABLE 1 ABOUT HERE

Figure 1 displays the bias (upper panels) and MSE (lower panels) for various factor

loading conditions. The left plot presents the higher-order factor, ξ, whereas the right plot

presents the domain factors, θ. Points within a plot indicate the average bias or MSE for a

given person parameter at each of the four time points after linking parameters at the

upper time points to parameters at the first time point. Average bias was calculated by

subtracting the true/generated parameters from the estimated parameters, averaging

across all persons, and then taking the median across replications. One can find two, fairly

obvious, trends as pertaining to the conditions presented in Figure 1. When λ = .9, an

increase in time also yielded a concurrent increase in bias and MSE for both domain and

higher-order traits. Note that λ relates the higher-order ξ to the domain-level θs. This

result is entirely an artifact of scaling in estimation. As it turns out, the scale that we

imposed on ε as being σ2
ε = 1− λ2 did not hold for σ2

ε ≈ 0. Therefore, the scale of ξ at a

given time point was not equal to the scale of θ at that time point, so that the linking

applied to θ did not also apply to ξ. Moreover, the linking method yielded negatively

biased item-slope parameters and positively biased domain person parameters (though the

http://www.tc.umn.edu/~nydic001/
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item-intercept parameters were still accurately estimated). As shown in Figure 1, this

scaling problem does not appear to be noticeable for λ = .8 (except, perhaps, for domain

person parameters at t ≥ 3). Therefore, the remaining results will be presented solely in

terms of correlation between true and estimated parameters rather than MSE/bias. Note

that the bias and MSE is small for those conditions with λ = .8 and noticeably large for

those conditions with λ = .9. Thus, the linking method described in Appendix A does not

appear to work well for λ ≈ 1 but does appear to work well for λ = .8.

INSERT TABLE 2 ABOUT HERE

Figure 2 displays the correlation between true and estimated person parameters for

K = 3 (upper panels) and K = 5 (lower panels) for those conditions presented in Figure 1.

One can spot a few trends suggested by Figure 2. First, higher λ always results in a larger

correlation between true and estimated parameters than lower λ. The blue triangles are

always higher up than the green circles in all of the plots. Second, more factors results in

larger correlations between true and estimated person parameters regardless of whether

looking at higher-order (left panels) or domain-level (right panels) abilities. Finally, true

and estimated person parameters tend to have slightly higher correlations for all factors

and conditions as time increases. The latter result is due to larger variability among true

person parameters at later values of time. We originally tried a similar study with much

lower variability among person parameters at t = 1, and the resulting estimates poorly

correlated with the true person parameters.

INSERT TABLE 3 ABOUT HERE

Figure 3 presents the correlation between true and estimated person parameters when

varying JK , the number of items loading on each dimension. Unsurprisingly, fewer items

loading on a particular domain-level trait resulted in poorer estimates of that trait. The

green circles are always below the blue triangles. Interestingly, this effect is slightly relieved
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for the higher-order trait if more domain abilities load onto the higher-order trait. Notice

that the green dots are slightly closer to the respective blue triangles in the lower left

quadrant of Figure 3 than they are in the upper right quadrant (whereas domain abilities

are further apart when comparing the same conditions). Thus, accurate estimates of

higher-order traits can be obtained even with inaccurate estimates of lower-order traits as

long as many lower-order traits load onto the higher-order trait.

INSERT TABLE 4 ABOUT HERE

Finally, consider Figure 4, which presents the correlation between true and estimated

person parameters when varying N , the number of simulees. When closely examining

Figure 4, one can see that, unlike the previous two plots, the green dots and blue triangles

are actually fairly close in all quadrants of Figure 4. Therefore, varying the number of

simulees did not have much of an effect on the ultimate estimation precision of person

parameters. However, the blue triangles and green dots are still somewhat separated.

Therefore, varying the number of simulees did have some effect on the ultimate estimation

precision of person parameters. The reason for the small but noticeable effect of N is that

sample size directly impacts the accuracy of item parameter estimation, so that poorer item

parameter estimates propagates through to the person parameter estimates. This effect is

incidental rather than direct, so that the ultimate cost in estimation precision is small.

Conclusion

Many teachers, administrators, and government employees require the measurement

of student growth. Teachers can use estimated growth to modify lesson plans based on

strategies of improvements. Administrators can use estimated growth to examine school

performance and help make budgetary decisions. In either case, one must accurately

estimate student growth across several, possibly correlated, ability dimensions. This

current paper presents a realistic, formative model of growth across several sub-domains

and determines the accuracy and efficiency of estimating the model with Mplus. As shown
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in the previous section, Mplus accurately estimates person parameters over time as long as

the relationship between the higher and lower order traits is small enough to prevent

difficulties in scaling the residual variance. Of course, this scaling problem might be

alleviated by either different model constraints, alternative methods of linking parameter

estimates across time, or concurrent calibration methods. Yet, as shown for the conditions

with T = 2, concurrently calibrating all of the parameters at all time points did not

provide a large increase in estimation precision. We had already attempted to estimate the

complete model for T = 4, and Mplus took at least four hours and had difficulty

converging. Breaking down the problem into separate calibrations at each time point

turned a complex problem, namely estimating item and person parameters at each time

point with constraints on the item parameters, the relationships, and the scaling, into

several more tractable, higher-order IRT models. Maximum likelihood via the

EM-algorithm is known to converge very slowly in many applications (e.g., Meng & van

Dyk, 1997), and alternative methods, such as Markov Chain Monte Carlo (MCMC; e.g.,

Patz & Junker, 1999), might retain tractability in estimation without sacrificing model

specification. However, regardless of estimation method, constructing and estimating

longitudinal IRT models should improve the measurement of educational outcomes, and

thus, provide educators with the tools they need to better help students learn.
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Table 1
Average Mean Squared Error (MSE) for estimates of ξ and θ aggregating within correlation
conditions when generating data from a model with T = 2 and K = 3. The upper half
presents results when calibrating all of the parameters together, whereas the lower half
presents results when separately calibrating parameters at each time point.

r ξ(1) ξ(2) θ
(1)
1 θ

(1)
2 θ

(1)
3 θ

(2)
1 θ

(2)
2 θ

(2)
3

Combined .50 0.24 0.27 0.40 0.39 0.40 0.42 0.41 0.42
.75 0.21 0.24 0.38 0.40 0.38 0.40 0.40 0.39

Separate .50 0.25 0.27 0.38 0.37 0.38 0.41 0.40 0.41
.75 0.25 0.27 0.39 0.39 0.39 0.43 0.43 0.42
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Table 2
Average correlation between true and estimated ξ and θ aggregating within correlation
conditions when generating data from a model with T = 2 and K = 3. The upper half
presents results when calibrating all of the parameters together, whereas the lower half
presents results when separately calibrating parameters at each time point.

r ξ(1) ξ(2) θ
(1)
1 θ

(1)
2 θ

(1)
3 θ

(2)
1 θ

(2)
2 θ

(2)
3

Combined .50 .88 .88 .88 .88 .88 .88 .88 .88
.75 .89 .89 .88 .88 .89 .89 .89 .89

Separate .50 .87 .87 .88 .88 .88 .88 .88 .88
.75 .87 .87 .88 .88 .88 .88 .88 .88
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Table 3
Average Mean Squared Error (MSE) for estimates of ξ and θ aggregating within factor
loading conditions when generating data from a model with T = 2 and K = 3. The upper
half presents results when calibrating all of the parameters together, whereas the lower half
presents results when separately calibrating parameters at each time point.

λ ξ(1) ξ(2) θ
(1)
1 θ

(1)
2 θ

(1)
3 θ

(2)
1 θ

(2)
2 θ

(2)
3

Combined .80 0.26 0.29 0.26 0.27 0.26 0.27 0.27 0.26
.90 0.19 0.22 0.51 0.52 0.51 0.55 0.54 0.55

Separate .80 0.29 0.31 0.27 0.27 0.27 0.28 0.29 0.29
.90 0.20 0.23 0.50 0.50 0.50 0.55 0.54 0.54
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Table 4
Average correlation between true and estimated ξ and θ aggregating within factor loading
conditions when generating data from a model with T = 2 and K = 3. The upper half
presents results when calibrating all of the parameters together, whereas the lower half
presents results when separately calibrating parameters at each time point.

λ ξ(1) ξ(2) θ
(1)
1 θ

(1)
2 θ

(1)
3 θ

(2)
1 θ

(2)
2 θ

(2)
3

Combined .80 .86 .86 .87 .87 .87 .87 .88 .87
.90 .90 .91 .89 .89 .89 .89 .89 .89

Separate .80 .84 .84 .87 .87 .87 .87 .87 .87
.90 .89 .89 .89 .89 .89 .89 .89 .89
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Table 5
Average Mean Squared Error (MSE) for estimates of ξ and θ aggregating within items on
each dimension when generating data from a model with T = 2 and K = 3. The upper half
presents results when calibrating all of the parameters together, whereas the lower half
presents results when separately calibrating parameters at each time point.

JK ξ(1) ξ(2) θ
(1)
1 θ

(1)
2 θ

(1)
3 θ

(2)
1 θ

(2)
2 θ

(2)
3

Combined 10 0.25 0.29 0.44 0.44 0.44 0.46 0.46 0.45
20 0.19 0.22 0.34 0.34 0.34 0.36 0.36 0.36

Separate 10 0.28 0.31 0.43 0.43 0.43 0.46 0.47 0.46
20 0.21 0.22 0.34 0.34 0.34 0.37 0.37 0.36
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Table 6
Average correlation between true and estimated ξ and θ aggregating within items on each
dimension when generating data from a model with T = 2 and K = 3. The upper half
presents results when calibrating all of the parameters together, whereas the lower half
presents results when separately calibrating parameters at each time point.

JK ξ(1) ξ(2) θ
(1)
1 θ

(1)
2 θ

(1)
3 θ

(2)
1 θ

(2)
2 θ

(2)
3

Combined 10 .87 .87 .86 .86 .86 .86 .86 .86
20 .90 .90 .91 .91 .91 .91 .91 .91

Separate 10 .85 .85 .85 .85 .85 .85 .85 .85
20 .89 .89 .91 .91 .91 .91 .91 .91
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Figure 1 . The bias and MSE when comparing true and estimated ξ and θ across time and
aggregating within factor loading conditions if generating data from a model with T = 4
and K = 3. Note that the upper plot displays bias results when subtracting the true value
of a person parameter from its estimated value.
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Figure 2 . The correlation between true and estimated ξ and θ across time when
aggregating within factor loading conditions if generating data from a model with T = 4
and K = 3 (upper plot) or K = 5 (lower plot).
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Figure 3 . The correlation between true and estimated ξ and θ across time when
aggregating within items on each dimension if generating data from a model with T = 4
and K = 3 (upper plot) or K = 5 (lower plot).
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Figure 4 . The correlation between true and estimated ξ and θ across time when
aggregating within number of persons if generating data from a model with T = 4 and
K = 3 (upper plot) or K = 5 (lower plot).
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Appendix A

IRT Parameter Linking Equation

Items were linked onto the scale of the first time point using a form of mean/sigma

equating. To explain this equating method, define the multi-unidimensional 2PL IRT

model as

pij = Pr(Yijkj
= 1|θik, ajkj

, dj) = 1
1 + exp[−ajkj

θik − dj]
, (8)

where ajkj
is the jth item discrimination parameter (measuring the latent trait along the

kth dimension), θik is the kth person parameter for the ith person, and dj is the jth item

threshold parameter. Item threshold parameters can be converted to difficulty parameters

by dividing by each corresponding item discrimination parameter, which is the form shown

in Equation (7).

Now assume that we have separately estimated parameters of Equation (8) at two

time points and wish to link item parameters at the second time point to the scale of item

parameters at the first time point. In other words, we have two sets of estimated

parameters: a(1)
jkj

(j = 1, . . . , J ; k = 1, . . . , K); d(1)
j (j = 1, . . . , J);

θ
(1)
ik (i = 1, . . . , N ; k = 1, . . . , K) at time point 1, and a(2)

jkj
(j = 1, . . . , J ; k = 1, . . . , K);

d
(2)
j (j = 1, . . . , J); θ(2)

ik (i = 1, . . . , N ; k = 1, . . . , K) at time point 2. If all items loaded onto

the same dimension, then one could apply standard IRT linking methods, such as

mean/mean, mean/sigma, Stocking-Lord, or Haebara. If all items loaded onto multiple

dimensions, then one must also rotate the loadings at the second time point to be oriented

in the same direction as the loadings at the first time point. However, because all items

load onto only one dimension, the dimensions are well-defined, and one can proceed with

standard IRT linking methods.

For the actual linking, we decided to use the mean/sigma method. Mean/sigma has

been shown relatively robust to models measuring growth (e.g., Baldwin, Baldwin, &

Nering, 2007) and much easier to explain/implement than alternative options. To complete
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the mean/sigma linking, we set t = 1 as the base distribution. Therefore,

σ1 =
√∑

(b(1)
j −b̄

(1)
j )2

J−1 , and µ1 = b̄
(1)
j = ∑

b
(1)
j /J was assumed the desired standard deviation

and mean of the item parameters at time point 2, where bj = −dj/ajkj
. Next, let

σ2 =
√∑

(b(2)
j −b̄

(2)
j )2

J−1 and µ1 = b̄
(2)
j = ∑

b
(2)
j /J . Then the equating slope would be β1|2 = σ1

σ2
,

and the equating intercept would be α1|2 = µ1 − β1|2µ2. Finally,

a
(2)?
jkj

= a
(2)
jkj
/β1|2 (j = 1, . . . , J ; k = 1, . . . , K)

θ
(2)?
ik = θ

(2)
ik × β1|2 + α1|2 (n = 1, . . . , N ; k = 1, . . . , K)

d
(2)?
j = −(b(2)

j × β1|2 + α1|2)× a(2)?
jkj

(j = 1, . . . , J)

If t > 2, then one must link parameters at each time point to the scale of parameters at the

first time point by simply replacing the superscript (2) with the appropriate t.
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Appendix B

Example Mplus Script for Joint Calibration and T = 2

TITLE: Longitudinal Hierarchical IRT Estimation

DATA: FILE IS hSim11111.dat;

VARIABLE: NAMES ARE it1_1 it2_1 it3_1 it4_1 it5_1

it6_1 it7_1 it8_1 it9_1 it10_1

it11_1 it12_1 it13_1 it14_1 it15_1

it16_1 it17_1 it18_1 it19_1 it20_1

it21_1 it22_1 it23_1 it24_1 it25_1

it26_1 it27_1 it28_1 it29_1 it30_1

it1_2 it2_2 it3_2 it4_2 it5_2

it6_2 it7_2 it8_2 it9_2 it10_2

it11_2 it12_2 it13_2 it14_2 it15_2

it16_2 it17_2 it18_2 it19_2 it20_2

it21_2 it22_2 it23_2 it24_2 it25_2

it26_2 it27_2 it28_2 it29_2 it30_2;

CATEGORICAL ARE it1_1 it2_1 it3_1 it4_1 it5_1

it6_1 it7_1 it8_1 it9_1 it10_1

it11_1 it12_1 it13_1 it14_1 it15_1

it16_1 it17_1 it18_1 it19_1 it20_1

it21_1 it22_1 it23_1 it24_1 it25_1

it26_1 it27_1 it28_1 it29_1 it30_1

it1_2 it2_2 it3_2 it4_2 it5_2

it6_2 it7_2 it8_2 it9_2 it10_2

it11_2 it12_2 it13_2 it14_2 it15_2

it16_2 it17_2 it18_2 it19_2 it20_2

it21_2 it22_2 it23_2 it24_2 it25_2
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it26_2 it27_2 it28_2 it29_2 it30_2;

ANALYSIS: TYPE = GENERAL;

ESTIMATOR = MLR;

LINK = LOGIT;

INTEGRATION = MONTECARLO;

MODEL: th1_1 BY it1_1* it2_1* it3_1* it4_1* it5_1* (f1 f2 f3 f4 f5)

it6_1* it7_1* it8_1* it9_1* it10_1* (f6 f7 f8 f9 f10);

th2_1 BY it11_1* it12_1* it13_1* it14_1* it15_1* (f11 f12 f13 f14 f15)

it16_1* it17_1* it18_1* it19_1* it20_1* (f16 f17 f18 f19 f20);

th3_1 BY it21_1* it22_1* it23_1* it24_1* it25_1* (f21 f22 f23 f24 f25)

it26_1* it27_1* it28_1* it29_1* it30_1* (f26 f27 f28 f29 f30);

th1_2 BY it1_2* it2_2* it3_2* it4_2* it5_2* (f1 f2 f3 f4 f5)

it6_2* it7_2* it8_2* it9_2* it10_2* (f6 f7 f8 f9 f10);

th2_2 BY it11_2* it12_2* it13_2* it14_2* it15_2* (f11 f12 f13 f14 f15)

it16_2* it17_2* it18_2* it19_2* it20_2* (f16 f17 f18 f19 f20);

th3_2 BY it21_2* it22_2* it23_2* it24_2* it25_2* (f21 f22 f23 f24 f25)

it26_2* it27_2* it28_2* it29_2* it30_2* (f26 f27 f28 f29 f30);

xi1 BY th1_1-th3_1*.8 (lamb);

xi2 BY th1_2-th3_2*.8 (lamb);

[it1_1$1 it2_1$1 it3_1$1 it4_1$1 it5_1$1] (f31 f32 f33 f34 f35);

[it6_1$1 it7_1$1 it8_1$1 it9_1$1 it10_1$1] (f36 f37 f38 f39 f40);

[it11_1$1 it12_1$1 it13_1$1 it14_1$1 it15_1$1] (f41 f42 f43 f44 f45);

[it16_1$1 it17_1$1 it18_1$1 it19_1$1 it20_1$1] (f46 f47 f48 f49 f50);

[it21_1$1 it22_1$1 it23_1$1 it24_1$1 it25_1$1] (f51 f52 f53 f54 f55);

[it26_1$1 it27_1$1 it28_1$1 it29_1$1 it30_1$1] (f56 f57 f58 f59 f60);

[it1_2$1 it2_2$1 it3_2$1 it4_2$1 it5_2$1] (f31 f32 f33 f34 f35);

[it6_2$1 it7_2$1 it8_2$1 it9_2$1 it10_2$1] (f36 f37 f38 f39 f40);
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[it11_2$1 it12_2$1 it13_2$1 it14_2$1 it15_2$1] (f41 f42 f43 f44 f45);

[it16_2$1 it17_2$1 it18_2$1 it19_2$1 it20_2$1] (f46 f47 f48 f49 f50);

[it21_2$1 it22_2$1 it23_2$1 it24_2$1 it25_2$1] (f51 f52 f53 f54 f55);

[it26_2$1 it27_2$1 it28_2$1 it29_2$1 it30_2$1] (f56 f57 f58 f59 f60);

[th1_1-th3_1@0];

[th1_2-th3_2*0.2];

th1_1-th3_1@.5 th1_2-th3_2@.5;

[xi1@0];

[xi2*0.5];

xi1@1;

xi2*1;

xi1-xi2 WITH xi1-xi2;

OUTPUT: TECH1, TECH8;

SAVEDATA: FILE IS hSim11111.sav; SAVE = FSCORES;

PLOT: TYPE = PLOT3;
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Appendix C

Example Mplus Script for Separate Calibration and T = 2

TITLE: Longitudinal Hierarchical IRT Estimation

DATA: FILE IS hSim11111_t1.dat;

VARIABLE: NAMES ARE it1_1 it2_1 it3_1 it4_1 it5_1

it6_1 it7_1 it8_1 it9_1 it10_1

it11_1 it12_1 it13_1 it14_1 it15_1

it16_1 it17_1 it18_1 it19_1 it20_1

it21_1 it22_1 it23_1 it24_1 it25_1

it26_1 it27_1 it28_1 it29_1 it30_1;

CATEGORICAL ARE it1_1 it2_1 it3_1 it4_1 it5_1

it6_1 it7_1 it8_1 it9_1 it10_1

it11_1 it12_1 it13_1 it14_1 it15_1

it16_1 it17_1 it18_1 it19_1 it20_1

it21_1 it22_1 it23_1 it24_1 it25_1

it26_1 it27_1 it28_1 it29_1 it30_1;

ANALYSIS: TYPE = GENERAL;

ESTIMATOR = MLR;

LINK = LOGIT;

INTEGRATION = MONTECARLO;

MODEL: th1_1 BY it1_1* it2_1* it3_1* it4_1* it5_1* (f1 f2 f3 f4 f5)

it6_1* it7_1* it8_1* it9_1* it10_1* (f6 f7 f8 f9 f10);

th2_1 BY it11_1* it12_1* it13_1* it14_1* it15_1* (f11 f12 f13 f14 f15)

it16_1* it17_1* it18_1* it19_1* it20_1* (f16 f17 f18 f19 f20);

th3_1 BY it21_1* it22_1* it23_1* it24_1* it25_1* (f21 f22 f23 f24 f25)

it26_1* it27_1* it28_1* it29_1* it30_1* (f26 f27 f28 f29 f30);

xi1 BY th1_1-th3_1*.8 (lamb);
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[it1_1$1 it2_1$1 it3_1$1 it4_1$1 it5_1$1] (f31 f32 f33 f34 f35);

[it6_1$1 it7_1$1 it8_1$1 it9_1$1 it10_1$1] (f36 f37 f38 f39 f40);

[it11_1$1 it12_1$1 it13_1$1 it14_1$1 it15_1$1] (f41 f42 f43 f44 f45);

[it16_1$1 it17_1$1 it18_1$1 it19_1$1 it20_1$1] (f46 f47 f48 f49 f50);

[it21_1$1 it22_1$1 it23_1$1 it24_1$1 it25_1$1] (f51 f52 f53 f54 f55);

[it26_1$1 it27_1$1 it28_1$1 it29_1$1 it30_1$1] (f56 f57 f58 f59 f60);

[th1_1-th3_1@0];

th1_1-th3_1@.5;

[xi1@0];

xi1@1;

OUTPUT: TECH1, TECH8;

SAVEDATA: FILE IS hSim11111_t1.sav; SAVE = FSCORES;

PLOT: TYPE = PLOT3;
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