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Abstract

Computerized classification testing (CCT) is a modification of computerized adaptive

testing (CAT) with the goal of classifying examinees into pre-specified categories. A

major component of every classification test is determining at what point a classification

decision should be made. One frequently used stopping rule in CCT is the Sequential

Probability Ratio Test (SPRT), which results in a classification either when the strength

of the log-likelihood ratio test statistic is sufficiently large or when the maximum number

of items has been reached. In short tests, the SPRT is inefficient due to properties of the

likelihood ratio, necessitating other methods that address shortcomings of the SPRT,

including the Generalized Likelihood Ratio (GLR) and the SPRT with Stochastic

Curtailment (SCSPRT). The SCSPRT terminates a classification test when the

probability of switching categories by maximum test length is small. Because most of

the work on stopping rules was derived for a two category CCT, the current study

compares the SPRT, GLR, and SCSPRT under a variety of conditions when there are

more than two categories. None of the stopping rules adequately control the

misclassification rate, but as expected, the SCSPRT results in shorter tests than the SPRT

without much loss in classification accuracy. Many practitioners might prefer to use the

GLR, which resulted in similar performance to the SCSPRT but with a substantial

decrease in computation time.
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Accuracy and Efficiency in Classifying Examinees Using Computerized Adaptive Tests:

An Application to a Large Scale Test

1. Introduction

Many educational and workforce assessments must classify examinees into pre-

specified categories. A basic classification decision might determine whether a particular

examinee is proficient at a task based on a single cut score (e.g., Kingsbury & Weiss,

1983; Welch & Frick, 1993; Yang, Poggio, & Glasnapp, 2006) and is frequently referred

to as a mastery or certification test. However, finer-grained divisions are often needed,

such that classifying an examinee into one of a number of categories can profoundly

influence educational success or career satisfaction. For example, classification tasks

might be intended to identify student proficiency level related to state standards or a job

candidate’s skill level compared to job requirements.

Regardless of the intent of classification, writing and administering many items to

each examinee can be costly and inefficient. Computerized classification testing (CCT)

applies adaptive testing methodology (e.g., Wainer, 2000; Weiss, 1982; Weiss &

Kingsbury, 1984) to reduce the number of items administered to a given examinee (e.g.,

Eggen, 1999; Eggen & Straetmans, 2000; Finkelman, 2008; Jiao & Lau, 2003; Kalohn &

Spray, 1999; Lewis & Sheehan, 1990; Thompson, 2007). By using an optimal algorithm

to select items and determine the number of items to administer, test practitioners

efficiently classify examinees into the appropriate category. Because CCT requires

decision rules to choose between competing categories, psychometricans have applied

sequential methods taken from statistical decision theory (c.f., Wald, 1947) to adaptive
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classification algorithms (e.g., Eggen, 1999; Finkelman, 2003, 2008; Spray & Reckase,

1996; Thompson, 2009; Wouda & Eggen, 2009).

The most commonly used sequential algorithm in CCT, the Sequential Probability

Ratio Test (SPRT; Wald, 1947) determines when enough independent and identically

distributed data (i.i.d.) have been collected to choose between one of two simple

hypotheses (e.g., Keener, 2010, pp. 417-422). With regard to classification testing, these

simple hypotheses are quantified as ability levels within each category. The original

SPRT procedure has been modified in different ways: (1) Extending the CCT using

SPRT to more than two categories (e.g., Eggen, 1999; Spray, 1993); (2) Using composite

hypotheses that take into consideration an examinee’s current ability estimate (GLR;

Thompson, 2009b, 2010); and (3) Making a classification decision when the probability

of being classified in the current category by maximum test length is high given the

remaining items in the bank (SCSPRT; Finkelman, 2003, 2008; Lan, Simpon, & Halpern,

1982). In this study, we applied the SPRT, GLR, and SCSPRT to a realistic,

computerized classification task with three and five categories. By applying various CCT

termination methods, we hope to provide corroborative evidence that sequential methods

work well in realistic testing scenarios.

The remainder of this paper is organized as follows. In Section 2, we identify the

IRT model underlying CCT, and we define the hypotheses needed to make any decision.

In Section 3 and 4, we introduce the SPRT and GLR as solutions to the classification

problem, and in Section 5, we explain the SCSPRT as an alternative method of

classification. In Sections 6 and 7, we outline our current study and describe the results.
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Finally, in Section 8, we evaluate the overall simulation, discuss limitations, and propose

future directions.

2. Item Response Theory and Computerized Classification Testing

Item Response Theory (IRT) formalizes the relationship between responses to test

items and examinee ability. The most common IRT model remains the unidimensional,

three-parameter logistic, binary response model (3PL model; Birnbaum, 1968). Let

denote the ability variable underlying responses to test items, assume that item responses

are conditionally independent given a particular level of (call that level for person i),

and allow all items to have two possible outcomes: a correct and incorrect response.

Then, according to the 3PL, the probability of person i correctly responding to item j can

be represented with the following item response function (IRF):

(1)

where designates the 0/1 response of person i to item j, is the difficulty or

extremity parameter of item j, is the discrimination parameter of item j, is the lower

asymptote for item j, and D is a scaling constant: 1.00 for the logistic metric and 1.702

for the normal-ogive metric. Furthermore, because D is a scaling constant that does not

affect model fit, we subsequently absorb D into the discrimination parameter for clarity.

By defining ability as a single, latent variable falling along a continuum, we can

easily systematize the classification problem. For instance, take a mastery test with two

categories, and denote the ability level separating a master from a non-master as . True

classification depends on where an actual examinee falls in relation to the cutting point,

. If  ≥ for examinee i, then the examinee falls into category 1 and should pass the
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test; alternatively, if < , then the examinee falls into category 0 and should fail the

test. However, we never know true , so we have to make a decision with incomplete

information. Following Finkelman (2008), label the decision made for person i, . If

 ≥ and = 1 or < and = 0, then we have made a correct decision.

Otherwise, we are in error. Sequential tests were derived to use the fewest items while

strictly controlling the error rate.

3. The SPRT and TSPRT as Applied to CCT

The classic SPRT in classification CAT (e.g., Eggen, 1999; Reckase, 1983; Spray

& Reckase, 1986) starts out by defining a simpler form of the classification problem.

Rather than testing whether an examinee is above a cut-point versus below a cut-point,

the hypotheses are simplified to the end points of an indifference region surrounding the

cut-point. If the indifference region is symmetric, then we can denote the indifference

region as ( - , + ). The indifference region should be set such that any true ability

within it can be classified without regret as either passing or failing the test.

After an examinee responds to an item, the SPRT calculates the likelihood if his

or her actual ability were + (at one end of the indifference region) versus the

likelihood if his or her ability were - (at the opposite end of the indifference region).

If responses are conditionally independent and follow a unidimensional, binary, item

response function (IRF), then the log-likelihood of a particular response pattern, ,

assuming a true ability of is

(2)
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where is defined in Equation (1). The log-likelihood of examinee i having ability

= + relative to having ability = - is

(3)

with and replacing on the right-hand side of Equation (2). When Equation (3) is

a large, positive number, then there is sizable evidence supporting as generating the

particular response pattern rather than . Conversely, when Equation (3) is a large,

negative number, then there is sizable evidence supporting .

To determine the degree of evidence that one would need before making a

decision, Wald (1947) recommended using and

] as lower and upper critical values, where and represent the

desired Type I and Type II error rates, respectively. When is below

the lower critical value, the CCT should terminate and classify examinee i in the lower

category. When is above the upper critical value, the CCT should

classify examinee i in the upper category. Otherwise, there is not enough evidence for

classification, and the examinee should be administered another item. Even though the

SPRT tests simple hypotheses, versus , when the true value of is outside of the

indifference region, the actual error rates are smaller than the nominal error rates at the

end points (see Chang, 2004, p. 49).

Unfortunately, researchers have identified at least two limitations of the classic

SPRT in adaptive testing. First, practitioners are seldom interested only in the endpoints

of an indifference region. Classification tasks are usually used to determine whether the
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examinees evince any trait level between two cut-points. In light of this concern, the

Generalized Likelihood Ratio (GLR; Bartroff, Finkelman, & Lai, 2008; Thompson, 2009,

2010) was proposed as a modification of the SPRT for testing composite hypotheses.

Second, most classification tasks must decide on a category before some maximum

number of items have been administered, K. After K items, the test forces termination by

comparing the log-likelihood ratio to the average of the two critical values, Cl and Cu.

Even though the original SPRT is thought to have optimal properties, in that “when

observations are independent and identically distributed (IID), no other method has better

error rates and better average test lengths” (Finkelman, 2008, p. 451), Finkelman (2003,

2008) demonstrated that a truncated SPRT is not the most efficient decision procedure.

In the next two sections, we elaborate on adjustments to the SPRT algorithm.

4. The GLR

The Generalized Likelihood Ratio (GLR) is a modification of the original SPRT

algorithm for testing composite hypotheses. The original SPRT hypotheses are as

follows (for a given classification bound ):

.

These hypotheses are the same for the entire test regardless of the shape of the likelihood

function. Bartroff, Finkelman, and Lai (2008) and Thompson (2009b, 2010) proposed a

method by which the algorithm searches for the maximum of the likelihood function on

either side of the boundary point and compares that maximum with the threshold on the

other side (see Thompson, 2010, p. 5 for a graphical representation of the modified test

statistic). Importantly, because the hypotheses can vary as a function of the maximum

likelihood estimate ( ) , the modified GLR procedure is effectively testing
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which are the original hypotheses rather than the simplified ones used to calculate the

SPRT likelihood ratio statistic. Batroff et al. (2008) recommended basing part of the test

statistic (including the critical values) on simulation, whereas Thompson (2009, 2010)

suggested using the same critical values as in the SPRT. Even when using an inexact

system, Thompson (2010) found that the classification accuracy when using the GLR was

not noticeably different than the SPRT but that the average test length was reduced by

approximately 10 items on a K=200 item test.

Although the GLR has been shown to outperform the SPRT, neither procedure is

optimal unless the maximum test length is unlimited. Finkelman (2003, 2008) showed

that for K < ∞, a procedure that terminated a classification test when the probability of

switching categories by maximum test length was small would outperform the SPRT

given the same , , and . In the next section, we describe the logic of stochastic

curtailment as applied to classification CAT.

5. The SPRT with Stochastic Curtailment

Finkelman (2004, 2008) developed a supplementary classification criterion, based

on Lan, Simon, and Halpern (1982), which he termed the Sequential Probability Ratio

Test with Stochastic Curtailment (SCSPRT). After administering the maximum number

of items, the Truncated SPRT (TSPRT) will be forced to make a decision, usually based

on the category in which falls. Even though the likelihood ratio might not satisfy the

SPRT criterion by k < K, a different classification might be unlikely by k = K due to a
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weak set of remaining items. The SCSPRT proceeds in three steps: (1) Sequential

Probability Ratio Test, (2) Curtailment, and (3) Stochastic Curtailment.

5.1 Curtailment

We can redefine the curtailment problem in terms of the log-likelihood, as defined

in Equation (2). The maximum likelihood estimator of is determined by setting the

derivative of the log-likelihood equal to 0 and solving for . For the 3PL, the equation

simplifies to

(4)

where

. (5)

Note that we can use Equation (4) to iteratively find a maximum likelihood estimate

given a provisional series of responses. Whether a classification test should be curtailed

depends on whether particular values of have the possibility of being a maximum

likelihood estimate. For instance, let the maximum likelihood estimate be less than the

cut-point after k < K items. Then if Equation (4) cannot hold for above the cut-point

after the maximum number of items have been administered, then any in the upper

category will never be the maximum likelihood estimate.

Next, set

(6)

and

(7)
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where is the endpoint closest to of a confidence interval (described in Section 5.3)

and is calculated by combining items administered so far with potential future items

remaining in the bank. Then a classification test should terminate if

(8)

or if

. (9)

When Equation (8) holds, examinee i can answer the remaining items correctly without

> , and when Equation (9) holds, examinee i can answer the remaining items

incorrectly without < . In both cases, additional information will not change the

classification.

5.2 Stochastic Curtailment

The “curtailment condition”, as defined in Section 5.1, requires the hypothetical

examinee to not change categories by the end of the test. Finkelman (2003) added a

probabilistic component to the “curtailment condition,” so that the test will terminate if

the examinee should not change categories given the remaining test items. Assume that

enough items are remaining so that (the distribution of at the end of the test

given the items already taken) is approximately normally distributed. Then Finkelman

(2003) demonstrated that the probability that examinee i will be above the cut-point at

maximum test length given an MLE currently above the cut-point (

where ) can be written as

. (10)
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Furthermore, the probability that examinee i will be below the cut-point at maximum test

length given an MLE currently below the cut-point ( where )

can be written as

(11)

where

(12)

and

. (13)

To find the estimated version of Equations (12) and (13), replace true with as

defined in Section 5.1 based on the current estimate of .

When there are only two categories, the “stochastic curtailment” procedure is as

follows: (1) set a nominal error rate (where < .50, usually = .05); (2) calculate

Equation (10) (if ) or Equation (11) (if ); (3) terminate the test and set

the final category equal to the current category if the cumulative density is greater than

some pre-specified .

5.3 SCSPRT with Many Categories

A logical adjustment to any stopping rule when there are more than two

categories (based off of work by Sobel & Wald, 1949) is to check the stopping rule at

each bound and classify examinee i into category g if there is evidence that he or she is

above category g – 1 and below category g + 1 (e.g., Eggen, 1999; Spray, 1993). When

using the SPRT or GLR, all of these tests can be performed without additional
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information. Unfortunately, when using stochastic curtailment “both additional stopping

rules need information of items that could be administered in the future … in order to be

able to assign examinees to a certain level” (Wouda & Eggen, 2009, p. 6). Both and

depend not just on the first k items administered to an examinee (which are already

known prior to calculating those terms), but they need information from the remaining K

– k items that the examinee will take in the hypothetical future. Wouda and Eggen

(2009) determined and based on the

ordering items that maximize Fisher information around particular locations. Fisher

information for item j only depends on a particular value of and not the item responses

(Lord, 1980). For instance, Wouda and Eggen (2009) chose items to calculate

and based on the endpoint of the confidence

interval closest to a particular bound. To calculate the confidence interval bound, one

would only need to use the observed Fisher information for the items already

administered, or

(15)

where

. (16)

Observed Fisher information is slightly different from expected Fisher information for

the 3PL model. To find expected Fisher information given a particular value of , which

is needed when choosing items, take the expectation of Equation (16).

Generalizing two classification bounds to G classification bounds is relatively

simple when adopting the methodology of Spray (1993). With G classification bounds,

there are G + 1 categories and possible hypotheses to test. But we only need to
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test sequential pairs of hypotheses because, for example, deciding that < also tells

us that is less than bounds . Therefore, one would only need to test each

pair of sequential bounds using the specified stopping rule, and classify a particular

examinee into the first category in which the test terminated.

6. Current Study Design

In this section, we describe a simulation study designed to compare stopping rules

under a variety of conditions when there are multiple classification categories.

6.1 Assessment Properties

We employed 600 items from a real item bank for a large-scale test calibrated

under the assumption of a three-parameter logistic model with D =1.702. The a-

parameters had a mean of 1.20 and a standard deviation of 0.33; the b-parameters had a

mean of 0.06 and a standard deviation of 1.43, and the c-parameters had a mean of 0.15

and a standard deviation of 0.07. The classification bounds were set to: (1) = -0.47

and = 1.18 for a three category test, and (2) = -1.39, = -0.47, = 0.28, and

= 1.18 for a five category test.

There were also minimal content constraints. Items were classified into eight

content areas, the first eight items of any CAT were selected to come from each of the

eight content areas, and no two consecutive items could come from the same content

area.

We repeated the simulation twice using and as the

minimum and maximum test length for any simulee. First, we determined the accuracy

and test length by simulating 400 classification tests at each of 81 θs evenly spaced
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between -4 and 4. We then attempted to mimic the classification accuracy and test length

in aggregate by simulating N = 5000 θs from a standard normal distribution.

6.2 Item Selection

Regardless of condition, the first four items for any CAT were randomly selected

from a range between -0.5 and 0.5, provided that they satisfied the minimal content

constraints. Simulees who did not have a mixed response pattern following the first four

items were randomly administered very easy or very difficult items until a bounded,

maximum likelihood estimate could be calculated. We then implemented two sets of

item-selection conditions with various specifications per condition. The “Fisher

Information” conditions ordered items according to their expected Fisher information at a

particular level, and the “Kullback-Leibler Divergence” conditions ordered items

according to their KL divergence at a particular level. Maximizing Fisher information

at a particular ability value is equivalent to minimizing the associated standard error.

Kullback-Leibler divergence (Chang & Ying, 1996; Kullback, 1959; Kullback & Leibler,

1951) relates to the expected loss when choosing an approximate model rather than the

correct model. For the 3PL IRT model, KL information can be expressed as (Chang &

Ying, 1996, p. 217)

. (17)

Chang and Ying (1996) recommended calculating KL divergence for a particular item by

integrating Equation (17) along within a small distance from . However, many



ACCURACY AND EFFICIENCY IN CLASSIFYING EXAMINEES 16

practitioners (including Eggen, 1999) estimate KL divergence by setting

and , where is the particular ability at which KL divergence should be

maximized, and is the half-width of the indifference region, as defined in Section 3.

Intuitively, an item with the largest KL divergence maximally differentiates between

slightly larger than and slightly smaller than . Fisher information is similar to KL

divergence when approaches 0.

For the Fisher information and KL divergence conditions, we chose items to

maximize the respective criterion at two values of : and the bound closest to .

Spray and Reckase (1994) indicated that selecting items to maximize information at the

“decision point” (p. 5) performs slightly better than maximizing information at the

current estimation of . We chose the closest bound based on Eggen (1999) Method

F4. Regardless of item selection method, we chose the top g items that satisfied a

particular criterion, where g was either 1, 5, or 15, and we randomly selected the next

item from that set.

6.3 Item Exposure

Due to security concerns, it was desired to limit the proportion of examinees who

responded to any given item. We used the Sympson-Hetter (SH; 1985) method of

controlling item exposure. The idea behind Sympson-Hetter (e.g., Chen & Lei, 2005) is

to control the rate at which examinees see a particular item by limiting the percentage of

times an item is administered given that it is selected. To calibrate this probability, we

used 5000 simulees from a standard normal distribution, and repeated the entire SH

procedure 10 times to stabilize our estimates of the required probabilities.
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During CAT administration, when selecting an item for any examinee, a random,

uniform variate, u, is compared to the probability of an item being administered given

that it is selected, . If u < the item is administered, but if u >

, the item is not administered and subsequently removed from the item bank for

that examinee. We used two values for the maximum proportion of simulees that should

be administered a given item: 1 (no item exposure), and .2 (at most 1/5th of the simulees

should see any item).

6.4 Ability Estimation

Once a simulee has a mixed response pattern, several item selection and

termination procedures require a provisional estimate of . We used two methods to

estimate simulee ability. The first estimation method was via a Maximum Likelihood

(MLE) criterion. To determine the MLE estimate, one only needs to iteratively find the

maximum of the likelihood equation.

However, Lord (1984) found that the maximum likelihood estimate is biased for

fixed length tests, with the bias inversely proportional to the length of the test (see Warm,

1989, p. 428). Warm (1989) presented a correction for the bias inherent in the MLE,

which he called Weighted Likelihood Estimation (WLE). Even though many studies

have used MLE to estimate ability (e.g., Bartroff, Finkelman, & Lai, 2008; Finkelman,

2008), weighted likelihood estimation has gained a foothold in the classification literature

(e.g., Eggen and Straetmans, 2000; Wouda and Eggen, 2009). Moreover, SCSPRT

depends on precise estimates of ability to calculate the necessary probabilities, so it is

conceivable that WLE could improve the classification accuracy of stochastic curtailment

early in a test.
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6.4 Termination

Our goal was to compare the classification accuracy and test length of each

stopping rule under a variety of conditions. We used four termination conditions,

including SPRT, GLR, SCSPRT (each discussed earlier), and Confidence Interval (CI).

The last termination condition, CI, is similar to the Sequential Bayes (SB) termination

condition discussed in Spray and Reckase (1996). The confidence interval method

calculates the confidence interval of the ability estimate, as defined by Equation (17), and

classifies a particular examinee into a category when the confidence interval is located

solely within that category. Unlike SPRT methods, CI (or SB) does not take into

consideration repeatedly estimating for any examinee, so the specified confidence

level overstates the true coverage rate.

7. Simulation Methods and Results

We performed three simulations, each designed to answer different research

questions. Our first two simulations examined the classification accuracy and test length

conditional on particular levels of ability. The first simulation used a three category

classification task, whereas the second simulation used five categories. Our final

simulation examined the overall classification accuracy and test length by aggregating

over a distribution of ability levels.

7.1 Simulation 1

Methods

We first simulated the conditional test length and classification accuracy for a

three category classification test. The specific item selection, ability estimation, and

exposure control conditions that we used were described in the previous section. Twelve
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stopping rules were used, including: (I) SPRT with = .10 or = .20 and = = .05 or

= = .10; (II) GLR with = .10 or = .20 and = = .05 or = = .10; (III)

SCSPRT with estimated from a confidence level of 0, 67%, or 95%; and (IV) CI using

a confidence level of 95%.

At each combination of conditions, we set true to 81, evenly spaced levels, from

-4 to 4, and we simulated 400 CATs at each of those levels. Our primary interest was to

determine conditional accuracy, number of items, and item exposure at specific θs.

Results

Figure 1 presents the conditional test length for certain termination conditions

when items were selected using maximum Fisher information at , ability was

estimated using MLE, and there were no item exposure constraints. Consider the green

and dark blue curves, which represent SPRT and GLR with identical indifference regions.

Although the difference between test lengths for both stopping rules are similar at the

classification bounds and for small values of , the similarity does not extend to

above the highest cut-point. Unlike the SCSPRT, GLR, and CI stopping rules, when

using the SPRT as a stopping rule, the increase in efficiency is greater for examinees

below the lowest cut-point than above the highest cut-point. The asymmetric efficiency

is most likely due to properties of the log-likelihood ratio test statistic in the three-

parameter logistic model and explored in a follow-up study.
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Figure 1
Test length averaged over 400 classification CATs conditional on selected values of
with items selected by Fisher information at , ability estimated by maximum likelihood
estimation, and no item exposure control. The vertical bars represent the classification
bounds. Only a few termination conditions are presented for illustration purposes.

When comparing the GLR to the SCSPRT conditions, it appears as though

stochastic curtailment without a confidence interval correction results in the shortest tests

for most levels of ability, and stochastic curtailment with a slight correction results in

short tests for true ability near the classification bounds but much longer tests for true

ability further away. GLR, on the other hand, results in test lengths about halfway

between the SPRT and SCSPRT conditions for true ability close to the classification
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bounds but very short tests for true ability in the extremes. A final thing to note is that

when terminating tests based on either the confidence interval method or stochastic

curtailment with a confidence interval correction, the average test length slopes upward at

extreme values of . Examinees with extreme tend to answer the first few items in

the same direction, so it is impossible to construct a finite confidence interval based on

likelihood theory. The increased test length for high and low ability simulees is an

artifact of the item bank and would rarely happen if the confidence interval was

constructed by Bayesian methods.

Figure 2 displays the conditional accuracy corresponding to the conditions

discussed in Figure 1. In Figure 2, all of the stopping rules appear to classify examinees

with relatively equal precision for most levels of true ability. However, for those

simulees with average or low ability, stochastic curtailment without a confidence interval

correction results in the poorest classification accuracy. Note that stochastic curtailment

was expected to result in slightly poorer classification accuracy, and the differences

between the curves in Figure 2 are small.
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Figure 2
Classification accuracy averaged over 400 classification CATs conditional on selected
values of with items selected by Fisher information at , ability estimated by
maximum likelihood estimation, and no item exposure control. The vertical bars
represent the classification bounds, and the horizontal bars 50% classification accuracy
and 95% classification accuracy. Only a few termination conditions are presented for
illustration purposes.

Other combinations of conditions resulted in differences between the stopping

rules that were very similar to those presented in Figures 1 and 2. The effect of other

factors on test length and classification accuracy will be presented later.
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7.2 Simulation 2

Methods

We next applied the procedures described in the previous sections to classify

simulees into five categories. The conditions that we used, and the procedure that we

followed, were identical to Method 1.

Results

Figure 3 presents the average test length for those combinations of conditions

discussed in Figure 1 when there were four cut-points. Notice how with five

classification categories, the differences between the stopping rules are magnified as

compared to three classification categories. Both stochastic curtailment conditions

resulted in the shortest tests for close to the classification bounds, both SPRT

conditions resulted in more efficient tests for below the lowest cut-point than above

the highest cut-point, and the GLR condition resulted in more efficient tests for in the

extremes. The major difference between Figures 1 and 3 is that the relative advantage of

stochastic curtailment is magnified when there are multiple cut-points in close proximity.
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Figure 3
Test length averaged over 400 classification CATs conditional on selected values of
with items selected by Fisher information at , ability estimated by maximum likelihood
estimation, and no item exposure control. The vertical bars represent the classification
bounds. Only a few termination conditions are presented for illustration purposes.

Figure 4 presents the conditional classification accuracy corresponding to the

conditions discussed in Figure 3. Even though using SCSPRT as a stopping rule results

in classification tests with the poorest classification accuracy, the differences in accuracy

between the stopping rules is less noticeable when there are five categories versus three

categories. In conjunction, Figures 3 and 4 suggest that termination criteria resulting in

shorter tests do not greatly impact classification accuracy when there are many categories
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and a short maximum test length. Furthermore, the relatively small differences in test

length for the different stopping rules might add result in different average test lengths up

across a realistic distribution of simulees.
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SCSPRT: conf level = .67
CI: conf level = .95

Figure 4
Classification accuracy averaged over 400 classification CATs conditional on selected
values of with items selected by Fisher information at , ability estimated by
maximum likelihood estimation, and no item exposure control. The vertical bars
represent the classification bounds, and the horizontal bars 50% classification accuracy
and 95% classification accuracy. Only a few termination conditions are presented for
illustration purposes.
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7.3 Simulation 3

Methods

Our final method was designed to estimate the performance of the termination

procedures under realistic testing conditions. Rather than fixing ability at 400 evenly

spaced values between -4 and 4, we simulated 2500 θs from a standard normal

distribution. Only by generating simulees from a distribution could we estimate the

overall classification accuracy and test length for a random sample of examinees. The

termination, item selection, exposure control, and ability estimation conditions were

identical to the previous two methods.

Results

Figure 5 depicts the percent classified correctly and average test length for each

combination of conditions in the three category classification task with points shaded to

represent different termination conditions. Each of the points within a given color

indicates a particular combination of item selection, exposure control, and ability

estimation methods. SCSPRT without a correction (represented by the cyan scatter of

points) results in the shortest tests. However, the average classification accuracy of the

aforementioned stopping rule is worse than any of the other methods by nearly .01.

Using SCSPRT with a confidence interval correction of .67 (represented by the pink

scatter of points) results in slightly improved accuracy as compared to no correction but

with an average of 1 additional item. The most liberal GLR, using = = .10 and =

.20 (represented by the dark blue scatter of points), results in test lengths and accuracy

nearly equivalent to the second SCSPRT condition. Even though there is a slight

increase in accuracy when using the standard SPRT, the increase is possibly due to much
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longer test lengths. A numerical summary of Figure 5 is displayed in Table 1. The

numerical summary displays the first quartile and mean of test length and the third

quartile and mean of percent classified correctly for the same conditions. There does not

appear to be a strong relationship between test length and percent classified correctly

within termination condition. As is apparent both in the table and in the graph, there is

not much of a difference between the first quartile and the mean of test length with the

exception of the confidence interval condition. Moreover, the GLR (with = = .10

and = .20) and the SCSPRT (with a conservative correction of .67) results in anywhere

from 3–7 items fewer relative to other termination criteria, but with less than a percentage

point decrease in accuracy.

Figure 6 displays the corresponding classification accuracy and test length for the

five category condition. Unlike the plot shown in Figure 5, there is little noticeable

upward trend in accuracy for stopping rules resulting in increased test length. SCSPRT

with a conservative correction of .67 appears to be nearly as accurate in classification as

GLR and SPRT, but results in anywhere from 1.5–4 items fewer per test. An equivalent

numerical summary is shown in Table 2. Note that the third quartile of classification

accuracy for the SCSPRT (with a conservative correction of .67) is higher than all but the

third quartiles of two SPRT conditions. Both of the SPRT conditions are associated with

test lengths close to the maximum allowed (21), whereas the SCSPRT with a

conservative correction is associated with a much shorter test length (17).
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Figure 5
Proportion classified correctly and number of items on a three category classification
task. Individual colors represent particular termination conditions, and points within a
color indicate combinations of: item selection, exposure control, and ability estimation
methods. SPRT1 and GLR1 uses = = .05 and = .10; SPRT 2 uses = = .10 and

= .10; SPRT3 and GLR2 uses = = .10 and = .20; SCSPRT1 is without a
conservative correction; SCSPRT2 uses a confidence interval correction of 67%; CI is
based off a 95% coverage rate.
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Figure 6
Proportion classified correctly and number of items on a five category classification task.
Individual colors represent particular termination conditions, and points within a color
indicate combinations of: item selection, exposure control, and ability estimation
methods. SPRT1 and GLR1 uses = = .05 and = .10; SPRT 2 uses = = .10 and

= .10; SPRT3 and GLR2 uses = = .10 and = .20; SCSPRT1 is without a
conservative correction; SCSPRT2 uses a confidence interval correction of 67%; CI is
based off a 95% coverage rate.
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Table 1
Percent classified correctly and test length on a three category classification task. For test
length, the 1st Quartile and mean number of items are displayed, whereas for percent
classified correctly, the 3rd Quartile and mean classification rate are displayed. SPRT1
and GLR1 uses = = .05 and = .10; SPRT 2 uses = = .10 and = .10; SPRT3
and GLR2 uses = = .10 and = .20; SCSPRT1 is without a conservative correction;
SCSPRT2 uses a conservative correction of .67; CI is based off a 95% coverage rate.

SPRT1 SPRT2 SPRT3 GLR1 GLR2 SCSPRT1 SCSPRT2 CI

1Q Length 20.8 20.3 16.7 16.6 13.4 12.4 13.5 15.6

Mean
Length

20.8 20.3 16.8 16.9 13.5 12.6 13.8 17.3

Mean PCC .887 .887 .888 .886 .881 .874 .880 .883

3Q PCC .891 .890 .891 .891 .884 .877 .882 .887

Table 2
Percent classified correctly and test length on a five category classification task. For test
length, the 1st Quartile and mean number of items are displayed, whereas for percent
classified correctly, the 3rd Quartile and mean classification rate are displayed. SPRT1
and GLR1 uses = = .05 and = .10; SPRT 2 uses = = .10 and = .10; SPRT3
and GLR2 uses = = .10 and = .20; SCSPRT1 is without a conservative correction;
SCSPRT2 uses a conservative correction of .67; CI is based off a 95% coverage rate.

SPRT1 SPRT2 SPRT3 GLR1 GLR2 SCSPRT1 SCSPRT2 CI

1Q Length 21.0 20.8 19.6 20.1 18.4 15.6 17.0 20.2

Mean
Length

21.0 20.9 19.6 20.1 18.5 15.7 17.1 20.4

Mean PCC .775 .776 .773 .773 .771 .758 .771 .773

3Q PCC .782 .782 .779 .779 .778 .766 .781 .778
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To reinforce conclusions drawn from Figures 5 and 6, we constructed four

ANOVA tables: (1) Table 3 summarizes the effect of different factors on classification

accuracy for a three category classification task; (2) Table 4 summarizes the effect of

different factors on test length for a three category classification task: (3) Table 5

summarizes the effect of different factors on classification accuracy for a five category

classification task; and (4) Table 6 summarizes the effect of different factors on test

length for a five category classification task. We only examined main effects and those

two-way interactions that include the stopping rule factor. Using an ANOVA is arguably

inappropriate considering the dependent variable and research design, but we are only

using it as a descriptive measure of variance accounted for by each factor (e.g., Guyer &

Weiss, 2009).

Table 3
The sums of squares and η2 = SSF/SST, where SSF is the sum of squares of a particular
factor, for an ANOVA explaining mean classification accuracy for the three category,
classification task. The ANOVA was run with all main effects and those interactions that
relate to the termination factor.

Variance Type Sum of Squares η2

Termination 0.00528 .330
Item Selection 0.00311 .195
Termination by Item Selection 0.00176 .110
Exposure 0.00037 .023
Termination by Ability Estimation 0.00028 .017
Termination by Exposure 0.00016 .010
Ability Estimation 0.00005 .003
Residuals 0.00498 .312
Total 0.15971
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Table 4
The sums of squares and η2 = SSF/SST, where SSF is the sum of squares of a particular
factor, for an ANOVA explaining mean test length for the three category, classification
task. The ANOVA was run with all main effects and those interactions that relate to the
termination factor.

Variance Type Sum of Squares η2

Termination 2098.727 .9548
Termination by Item Selection 73.959 .0336
Item Selection 22.041 .0100
Exposure 1.502 .0007
Termination by Exposure 0.420 .0002
Termination by Ability Estimation 0.369 .0002
Ability Estimation 0.004 .0000
Residuals 1.057 .0005
Total 2198.066

Based on Tables 3 through 6, termination, item selection, and the interaction of

termination by item selection account for most of the variance of both percentage

classified correctly and test length regardless of number of categories. Interestingly,

termination condition appears to have both a smaller effect on classification accuracy and

a larger effect on test length in the five category case (Tables 5 and 6) than in the three

category case (Tables 3 and 4), suggesting that stochastic curtailment is advantageous for

classification problems with multiple categories. Moreover, only in the three category

task does item selection appear to contribute much to overall classification accuracy.

Based on plots (not shown), a major reason for the moderately high η2 for item selection

is that selecting items at the classification bound results in slightly increased test length

and classification accuracy. Therefore, more research should be undertaken to determine

the nearest classification bound in models with guessing parameters. Termination

accounts for most of the variance in test length (η2 = .955 for the three category task and

η2 = .995 for the five category task), which is not surprising considering that we chose

conditions already known to affect test length. Other than stopping rule and item
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selection, all factors and interactions acount for so little variability in classification

accuracy and test length that those conditions are not discussed.

Table 5
The sums of squares and η2 = SSF/SST, where SSF is the sums of squares of a particular
factor, for an ANOVA explaining mean classification accuracy for the five category,
classification task. The ANOVA was run with all main effects and those interactions that
relate to the termination factor.

Variance Type Sum of Squares η2

Termination 0.00739 .263
Termination by Item Selection 0.00240 .085
Item Selection 0.00176 .063
Termination by Ability Estimation 0.00083 .029
Exposure 0.00081 .029
Termination by Exposure 0.00040 .014
Ability Estimation 0.00000 .000
Residuals 0.01453 .517
Total 0.28116

Table 6
The sums of squares and η2 = SSF/SST, where SSF is the sum of squares of a particular
factor, for an ANOVA explaining mean test length for the five category, classification
task. The ANOVA was run with all main effects and those interactions that relate to the
termination factor.

Variance Type Sum of Squares η2

Termination 817.714 .9951
Termination by Item Selection 1.732 .0021
Item Selection 0.625 .0008
Termination by Ability Estimation 0.549 .0007
Termination by Item Exposure 0.310 .0004
Exposure 0.274 .0003
Ability Estimation 0.116 .0001
Residuals 0.393 .0005
Total 821.713

Tables 7 and 8 indicate the five best and five worst conditions in terms of item

exposure. Termination conditions and ability estimation conditions affect item exposure

mostly through differing test lengths. Not surprisingly, SCSPRT without a correction

results in the best item exposure rates due to the shortest, average test length, and SPRT



ACCURACY AND EFFICIENCY IN CLASSIFYING EXAMINEES 34

(in general) results in the worst item exposure rates. In terms of item selection, the top

five item exposure rates are associated with selecting items at the ability estimate,

whereas the bottom five item exposure rates are associated with selecting items at the

classification bounds. The reason for the stark disparity in item exposure rates when

varying the location of selection is obvious: selecting items at the classification bounds

overexposes those items with difficulty parameters close to the classification bounds.

Unfortunately, we calibrated the Sympson-Hetter parameters identically for all of the

conditions based on adaptively selecting items using maximum Fisher information due to

time constraints. We suspect that re-calibrating the Sympson-Hetter parameters based on

selecting items at the nearest cut-point would reduce the overexposure for items close to

the classification bound. However, by using a modified set of Sympson-Hetter

parameters using item selection at the nearest cut-point, the gains in item exposure

control should be offset by increased test lengths and decreased classification accuracy.

Moreover, we did not implement very strict item exposure controls. Using a maximum

exposure rate of .1 rather than .2 should result in increased test length for all conditions.
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Table 7
The lowest five maximum item exposure rates when classifying simulees into three and
five categories, along with the specific overlap control, item selection, estimation, and
termination conditions that led to those conditions. Also displayed are the calculated test
overlap rates for each condition. The number in parentheses indicates how many
maximum items were randomly chosen between to determine the next item on any CAT.

Overlap Control Selection Estimation Termination Max Exposure Test Overlap
SH Fisher at Theta (5) MLE SCSPRT 1 0.151 0.147
SH KL at Theta (5) MLE SCSPRT 1 0.154 0.148
SH KL at Theta (5) WLE SCSPRT 1 0.157 0.149
SH Fisher at Theta (5) WLE SCSPRT 1 0.159 0.148
SH Fisher at Theta (1) MLE SCSPRT 2 0.165 0.152

Overlap Control Selection Estimation Termination Max Exposure Test Overlap
SH Fisher at Theta (5) MLE SCSPRT 1 0.218 0.143
SH Fisher at Theta (1) MLE SCSPRT 1 0.219 0.147
SH KL at Theta (5) MLE SCSPRT 1 0.222 0.143
SH KL at Theta (1) WLE SCSPRT 1 0.222 0.150
SH KL at Theta (5) WLE SCSPRT 1 0.222 0.147

Lowest Item Overlap Conditions (Three Categories)

Lowest Item Overlap Conditions (Five Categories)

Table 8
The worst five maximum item exposure rates when classifying simulees into three and
five categories, along with the specific overlap control, item selection, estimation, and
termination conditions that led to those conditions. Also displayed are the calculated test
overlap rates for each condition. The number in parentheses indicates how many
maximum items were randomly chosen between to determine the next item on any CAT.

Overlap Control Selection Estimation Termination Max Exposure Test Overlap
None Fisher at Bound (1) WLE SPRT 2 0.604 0.229
None Fisher at Bound (1) WLE SPRT 1 0.600 0.232
None KL at Bound (1) MLE SPRT 1 0.600 0.230
None KL at Bound (1) MLE SPRT 3 0.600 0.196
None KL at Bound (1) WLE SRPT 2 0.592 0.229

Overlap Control Selection Estimation Termination Max Exposure Test Overlap
None KL at Bound (1) WLE Conf Int 0.505 0.151
None KL at Bound (1) WLE SPRT 1 0.504 0.151
None KL at Bound (1) MLE SPRT 3 0.500 0.152
None KL at Bound (1) MLE GLR 1 0.500 0.150
None KL at Bound (1) WLE SPRT 3 0.490 0.150

Highest Item Overlap Conditions (Three Categories)

Highest Item Overlap Conditions (Five Categories)
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8. Discussion and Conclusions

Our study compared the classification accuracy and test length of various

stopping rules using items culled from a real item bank and classifying examinees into

either three or five categories. Stochastically curtailed SPRT improved over the

truncated SPRT in terms of test length, and the accuracy trade off was small as long as

we used a confidence interval correction. Moreover, in both tasks, the generalized

likelihood ratio with a relatively large indifference region was nearly identical in test

length and classification accuracy to stochastic curtailment with a 67% confidence

interval correction. Because stochastic curtailment is computationally intensive, one

should be able to use a GLR stopping rule without affecting accuracy and test length.

Even though the above simulations demonstrated improvement for the GLR and

SCSPRT over the standard SPRT in many situations, there were a few limitations. For

instance, we only varied a small set of parameters within each stopping rule. Difference

between the SPRT and the GLR could be partly due to using the same indifference region

in both procedures.  For example, would an indifference region with half-width δ = .3 for 

the SPRT result in similar performance to an indifference region with half-width δ = .2 

for the GLR? If the SPRT resulted in slightly higher classification accuracy with half-

width δ = .3, part of the accuracy decrement in the GLR could be due to using the same 

critical values as was used in the SPRT, and a more sophisticated simulation method

(e.g., Bartroff et al., 2008) might be needed to determine appropriate thresholds for

simulation.

Finkelman (2010) recently proposed variations on stochastic curtailment that

relate more to generalized hypotheses. A simple alternative to stochastic curtailment is to



ACCURACY AND EFFICIENCY IN CLASSIFYING EXAMINEES 37

find the probability of the generalized likelihood ratio surpassing a critical threshold.

None of the procedures proposed by Finkelman (2010) have been adapted to a

classification task with multiple categories. Furthermore, most generalizations of

multiple category sequential decision procedures are ad hoc implementations of Sobel

and Wald (1949). It is clear that the critical values from the typical SPRT are

inappropriate when there are many categories as evidenced by the classification rates in

the mid .80s for the three category classification task and the mid .70s for the five

category classification task. Several researchers have proposed individual critical values

based either on the distance between categories (Spray, 1993) or a step-down procedure

using a rank ordering of the likelihood ratio test statistic (e.g., Bartroff & Lai, 2010).

Other researchers have extended sequential testing to multiple composite hypotheses

(e.g., Pavlov, 1998), but these have yet to be applied to adaptive testing.

The simulations presented above demonstrate the power of likelihood ratio-based

methods for efficiently and accurately classifying examinees when there are multiple

categories. Adaptive testing is already being touted as the future of testing

methodologies, and determining the most effective stopping rule is an important

component of any CAT program. In light of both the accuracy and efficiency of adaptive

testing procedures, the Common Core State Standards will soon adopt computerized

adaptive tests in high-stakes exams (e.g., Way et al., 2010). Yet only when practitioners

are knowledgeable of the ideal testing procedures across all assessment types will CAT

fulfill its promise of being “highly compatible with the concept of vertically aligned

standards and curricula that progress toward college and career readiness” (Way et al.,

2010, p. 4).
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