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Abstract 
Frequently, because they tend to be large, CAT item banks are calibrated using concurrent-
calibration methods, which estimate IRT parameters from an incomplete data matrix including a 
set of linking items (e.g., Kim & Cohen, 1998).  This paper proposes and evaluates the 
performance of a hybrid simulation procedure for use in developing CATs that employs these 
sparse, concurrent-linking matrices.  The hybrid procedure estimates θ for each examinee with 
the item parameters estimated from the sparse linking matrix in conjunction with the set of item 
responses for each examinee. Then, the θ estimate for each examinee is used with monte-carlo 
simulation methods to impute the examinee’s missing data, resulting in a complete response 
vector for each examinee—part real item responses and part imputed simulated data.  A post-hoc 
simulation is then implemented with the hybrid response matrix.  Results suggest that 
meaningful hybrid simulations can be performed with sparse data matrices involving up to 
almost 80% missing/imputed data. 
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A Hybrid Simulation Procedure for the Development of CATs 

Practical Challenges in CAT Development 
Even though the immediate scoring and the reduced numbers of items to measure an 

examinee facilitates time conscious test implementers and examinees, many of the CAT 
challenges proposed in the early 1980s (see Weiss, 1982, 1985 for theoretical overviews and 
Mills & Stocking, 1996 for an overview of practical challenges in CAT development) have yet to 
be sufficiently unraveled. 

Test security (including item exposure controls) has been a main research focus over the past 
two decades (e.g., Sympson & Hetter, 1985; Stocking & Lewis, 1995; Chang & Ying, 1999; 
Leucht, 2003; and Georgiadou, Triantafillou, & Economides, 2007).  Moreover, Wainer, 2000b, 
found that 50% of item-examinee interactions only use about 14% of the item bank.  Because, in 
high-stakes testing, examinees might have motivation to cheat (academic, financial, or 
otherwise), and because a perpetual stream of examinees take tests from the same item bank, the 
only way of preventing item theft from contaminating test validity is to construct a large, and 
continuously changing, bank of items.  Some researchers (e.g., Wise & Kingsbury, 2000; 
Stocking, 1994) even advocate large, continuously changing, and continuously rotating banks of 
items; their reason for multiple banks, instead of one large item bank, was the ease with which 
thieves could electronically steal items and the exorbitant cost of prevention (Colton, 1998 as 
cited in Wise & Kingsbury, 2000).  Stocking (1994), found that doubling the number of banks 
reduced test overlap to a much greater extent than doubling the number of items in each bank. 

Furthermore, as mentioned by Weiss (1982), in order for a test to measure examinees 
equiprecisely, there must be numerous items across a wide range of θ.  If a test developer wants 
to accurately measure examinees with high ability, he or she needs to create enough difficult 
items to differentiate between people with exceptionally high ability and people with only 
moderately high ability.  Stocking (1994) advocated an item bank of at least six times the length 
of a conventional test (or 12 times the length of an adaptive test if the adaptive test length was 
one-half the length of a conventional test, though she did add that this assessment was 
conservative).  This means that, in an adaptive test of 30 items, the item bank would need to 
include at least 360 items; moreover, if a researcher wanted a test to use multiple, rotating item 
banks, then the total number of items could easily reach 1,000 or more.  Add that to the, ideally, 
constantly changing bank of items, the expense of calibrating each item (Guo, 2007), and other 
necessary precautions (including recalibration of items and continuous checks on item security; 
e.g., McLeod, Lewis, & Thissen, 2003) to prevent item parameter drift (Wise & Kingsbury, 
2000), and it becomes apparent that a considerable amount of cost and labor are necesssary to 
maintain an adequate CAT program.  

Linking and Concurrent Calibration 
Developing a CAT for implementation requires all of the items to be on the same scale in 

order to make comparative judgments about examinees’ scores.  However, because security and 
measurement concerns influence the large number of items in a CAT bank, and because the bank 
must continuously update items and update the calibration of existing items, no examinee could 
answer all the items in the bank(s) from which the CAT is based.  Either factors external to the 
trait (e.g., fatigue) would influence his/her score, security issues would prevent the examiner 
from wanting to present all of the items to one examinee (Makransky, 2008), examinees could 
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not physically take all of the items because of illness (e.g., Bjorner, et al. 2007; this applies to 
CATs designed for medical diagnostics), or the relative cost would make it unnecessarilly 
expensive to present more than a few items to each examinee (e.g., Wainer, 2000a). 

Thus, test devlopers needed a means of linking items onto the same scale.  Several methods 
transform item parameters to the scale of already existing item parameters (using a sequence of 
anchor items, or items taken by all examinees employed in test calibration).  Some of the 
traditional methods consist of linearly transforming the parameter values by the means and 
standard deviations of the θ or b estimates (Vale, 1986), or minimizing the true score estimates 
of the anchor items across groups (Stocking & Lord, 1983).  However, often the examiner wants 
a metric consisting of all of the information about items and groups, instead of arbitrailly 
transforming the scale of some items to the scale of other items or to an already existing scale.  
This method of “concurrent calibration” was used in LOGIST (Wingersky, Barton, & Lord, 
1982) and is currently implemented in XCALIBRE (Assement Systems Corporation, 1995).  In 
these programs, non-administered items are coded as “not reached,” estimating parameters on a 
subset of people (the people who take the item) and estimating θ on a subset of items (the items 
given to each person); instead of linking new items to existing items, this method creates a “full-
metric” scale that transcends a subgroup. 

A final consideration of concurently calibrating a set of items is the number of linking items 
to include—the number of items that every calibration examinee would take—in order to link all 
of the items onto a common scale; more linking items would create a longer test, while fewer 
linking items might not provide ample control for measurement error in test calibration.  
Wingersky and Lord (1984), suggested that as few as two items could calibrate a test with 
sufficiently accurate b estimates, while other researchers have recommended more, especially if 
the groups are not equivalent (Ree & Jensen, 1980; Vale, 1986).  Once the linking items are 
chosen, and the tests given, the researcher ultimately ends up with only a sparse data matrix of 
examinee responses (only responses to items that the researcher has given to each examinee, 
which is, of course, incomplete), which can result in item parameter estimates for each item and 
θ estimates for each person. 

Simulation Methods 
In order to implement a CAT, a researcher has to make decisions about CAT initiation (how 

to start the test), continuation (how to choose items), termination (how to end the test), and 
scoring.  Though a CAT can reduce the number of items 50% to over 90% (Weiss & Gibbons, 
2007; Gibbons, et al., 2008) with little loss in measurement accuracy, researchers still need to 
estimate CAT performance prior to implementation, to make the best decisions to maximize test 
effectiveness.  Furthermore, justification of a CAT instead of a conventional test requires 
estimates of the accuracy/efficiency tradeoff. For researchers to implement CAT constraints such 
as item exposure, they need to know the relative appearance of each item in the tests.  Two 
general methods have been applied to test aspects of CAT performance prior to implementation 
of a live CAT: monte-carlo (M-C) simulations and post-hoc (P-H) simulations. 

Harwell, Stone, Hsu, and Kirisci (1996) extensively explicated the rationale and application 
of M-C methods to solve IRT problems, including CAT.  A typical dichotomous M-C CAT 
simulation (e.g., Kim & Plake, 1993) has four parts: 

1. Generate simulee θs according to a specified distribution. 
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2. Generate item parameters based on specified distributions or use item parameters 
based on an already calibrated item bank. 

3. Generate a matrix of item responses based on a specified IRT model.  For each 
individual item/simulee combination, the item parameters and θ are used in the IRT 
model to generate a probability (P) of endorsing a specific item response.  A uniform 
random number is generated and compared to the model-generated probabilities to 
create a simulee’s scored (e.g., 0-1) response. 

4. Implement a CAT on the matrix of item responses, using each simulee’s model-
generated responses to each item, with a prespecified set of CAT options.   

A P-H simulation differs from a M-C simulation, in that the matrix of item responses in a P-
H simulation are actual responses from a conventional test of a certain length.  The researcher 
usually starts out with a long test and then tries to determine how short an adaptive test could be 
with the item bank that made up the conventional test. To determine potential test reduction, the 
researcher assumes that the examinees would respond in the same way to each item regardless of 
whether that item was presented amidst many other items at varying difficulties or few items 
around the same difficulty.  However, in a P-H the researcher has less control over aspects of test 
performance, such as the degree of misfit, the parameter distributions, and the knowledge of the 
truth behind the responses. In a M-C simulation, the researcher would be able to specify 
everything in advance.  When actually executing a CAT, the test implementer would not have 
control over these test aspects, so P-H simulation would allow researchers a means of predicting 
how a particular CAT would perform in practice. 

A typical P-H CAT simulation (e.g., Weiss & Gibbons, 2007; Gibbons et al. 2008; Waller & 
Reise, 1989) also has four steps: 

1. Administer a conventional test, typically consisting of an entire item bank, to a group 
of examinees. 

2. Score the responses on the test as a persons × items matrix of integers representing 
the examinee’s response choice (e.g., 0 or 1 for dichotomously scored items).  

3. Calibrate the item bank parameters by concurrent full-metric calibration using the 
matrix of responses and a parameter estimation program (e.g., XCALIBRE, 
Assessment Systems Corporation, 1995). 

4. Implement a CAT on the matrix of item responses (with a prespecified set of CAT 
options), using the examinee’s actual response to each item but the item parameter 
estimates and θ estimates to choose the sequence of items. 

In a variation of P-H simulation, item parameters might be estimated in advance from a prior 
data set (which might be a sparse data set resulting from a linking design).  These parameters 
might them be used to implement the P-H simulation based a smaller sample of examinees, all of 
whom would have taken all of the items in the item bank (e.g., Weiss & Gibbons, 2007; Gibbons 
et al., 2008)  

The primary difference between a M-C simulation and a P-H simulation is that a M-C 
simulation starts with a prespecified distribution of simulees and asks “what would happen if 
examinees randomly selected from this distribution took a CAT on these items” and thus 
generates hypothetical responses based on hypothetical people. A P-H simulation starts with 
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actual responses to actual items and asks “what would happen if these examinees took a CAT 
based on these items?” 

Hybrid Simulation  
Though M-C simulation is frequently used to initiate research into CAT effectiveness (e.g.,  

Kim & Plake, 1993;  Stocking, 1996; Weiss & McBride, 1984), ultimately CAT implementers 
would need to predict item and test characteristics based on real responses to real items.  If every 
person had responded to every item, then Weiss & Gibbons (2007; Gibbons, et al., 2008, 
demonstrated that P-H simulations well predict the outcome of a live CAT.  However, bank size 
and security constraints (as outlined above) usually prevent the test developer from having a full 
matrix of responses to every item.  Thus, a necessary precondition of performing a P-H 
simulation, namely that of every item having the possibility of appearing on every test, could not 
occur.  Consequently, a hybrid simulation is proposed in order to allow sparse data matrices to be 
used in estimating CAT properties through P-H simulation methods.  The hybrid simulation 
would be used to evaluate the performance of a CAT on a sparse data matrix, prior to 
implementing a live CAT. 

A hybrid simulation starts with an incomplete matrix of actual responses to actual items and 
asks “what would happen if these examinees COULD take a CAT on these items,” or in other 
words, “what would happen if every examinee COULD take every item,” and thus generates 
hypothetical responses based on real people to items that they did not take.  A researcher would 
have a sparse data matrix either if calibrating a large bank of items necessary for a CAT using a 
linking design or if estimating the effectiveness of a CAT on a new group of examinees without 
requiring them to take all the items in the item bank.  In neither case could an examinee respond 
to all of the items without external factors such as fatigue or boredom factoring in his or her 
score.  However, because all of the item parameters and person parameters can be accurately 
estimated using concurrent-calibration methods, all of the necessary information (parameters and 
model) will be available for the simulation of missing responses.  

A hybrid simulation combines useful aspects of a M-C simulation and a P-H simulation in an 
attempt to solve a heretofore unresolved practical challenge in estimating the usefulness (i.e., 
efficiency and accuracy) of a CAT.  It permits implementing a P-H simulation from an 
incomplete data matrix. A hybrid simulation has two possible options.  One option can be 
implemented if the parameters of the items to be used in a CAT have not previously been 
estimated, while the second can be implemented if assessing the effectiveness of a CAT with a 
new group of examinees.  The first option—a hybrid simulation with item parameters estimated 
from the sparse data matrix (HPP)—has eight steps: 

1. Divide the item bank into prespecified subsets of items along with a prespecified 
group of linking items. 

2. Divide the examinees such that each examinee only takes one of the item subsets 
along with all of the linking items. 

3. Administer only the selected items to the selected examinees. 

4. Score the items to create a matrix of scored item responses (e.g., 1s and 0s) and place 
a missing data value (e.g., a “-”) in the intersection of items that the examinee did not 
take. 
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5. Calibrate the item parameters with a concurrent-calibration method that will work 
properly with a sparse data matrix and will link the item parameters onto the common 
scale defined by the linking items (e.g., XCALIBRE; see Vale, 1986, p. 338, for a 
description of the concurrent-calibration method implemented in XCALIBRE). 

6. Estimate the θ of each examinee based on the item parameter estimates and the matrix 
of responses, ignoring items that have not been administered (i.e., treating them as 
“not reached,” rather than “skipped.”). 

7. Use the θ estimates from Step 6 and the item parameter estimates from  Step 5 to 
impute the missing data by simulating responses to items that examinees did not take, 
using the same IRT model that was used to estimate item parameters. 

8. Implement a P-H CAT simulation on the now complete hybrid matrix of item 
responses in the same way as above. 

The second method—a hybrid simulation based on a sparse data matrix, but using item 
parameters previously estimated on another sample (HFP)—also has eight steps: 

1. Use items and item parameters from an already calibrated item bank. 

2-5 are the same as Steps 1-4 of HPP above.  

6-8 are the same as Steps 6-8 of HPP above with the exception that the already calibrated 
item parameters are used  to estimate the θ of each examinee and to simulate 
responses (i.e., Step 5 of the HPP simulation is skipped). 

An advantage of the second approach is that its sample size requirements are much less than that 
of the HPP approach, which requires large samples to estimate item parameters. 

HPP could be used when test developers create a new test as a CAT; thus, the item bank 
would be too large for any examinee to answer all the items in a bank, and item parameters 
would have to also be estimated with a concurrent-calibration procedure.  HFP could occur when 
test developers try to turn an existing series of tests, measuring the same trait or ability, into a 
CAT, for which they should already have the item parameters from previous administrations.  
This circumstance could also occur if an item bank were calibrated on one group of people, and 
if a researcher were interested in how this item bank performed, as a CAT, on a separate group of 
people without giving anyone in this second group the entire test.  In general, for both scenarios, 
interest lies in the amount of information needed to estimate statistical properties of a CAT under 
practical constraints with P-H simulation. 

Method 
Simulees, Items, and Programs 

The M-C/hybrid simulation study used a full-test length of 620 items and a sample size of 
1,000 simulees randomly drawn from a standard normal distribution, where θ ~ N(0,1).  
Responses were simulated, for each simulee, from the logistic approximation to the normal ogive 
IRT model,   

.

exp[1.7 ( )]
[1| , , , ] (1 )

1 exp[1.7 ( )]
i j i

j i i i i i
i j i

a b
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where θj is the latent person parameter for examinee j,  

ai is  the slope/discrimination parameter of item i, 
bi is the location/difficulty parameter of item i  and  
ci is  the lower asymptote parameter of item i (sometimes called the pseudo-guessing 
parameter). 

A vector of discrimination parameters was generated from a lognormal distribution, with a ~ 
ln(−.15, .25), which is approximately equivalent to a mean of .88 and a standard deviation of .23 
in the IRT metric, and a vector of difficulty parameters was generated from a uniform 
distribution, with b ~ unif(−3.0, 3.0); for the three-parameter model (3PL), the vector of pseudo-
guessing parameters remained a constant c = .20; for the two-parameter model (2PL), the vector 
of pseudo-guessing parameters was set to c = 0, effectively eliminating the third parameter from 
the model.  The parameter distributions were designed to approximate an ideal item bank for 
CAT, with a reasonable size item bank of fairly high information across a wide range of θ (see 
Weiss, 1982, p. 478, for a rationale of equiprecise CAT measurement using a rectangular 
distribution of difficulties).  Though each replication generated new parameters, and thus new 
item banks, Figure 1 provides example bank information function (BIF) and bank standard error 
of measurement (SEM) functions from two 2PL and 3PL item bank [See Hambleton, 
Swaminathan, & Rogers (1991, pp. 91–99) for equations for test information functions (BIFs in 
this context) and the related SEMs.)]. 
 

Figure 1. Bank Information and SEM Functions  
for Example 620-Item 2PL and 3PL Item Banks 

a.  Bank Information Functions 
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b. SEM Functions 
 

 
For the hybrid based on M-C simulated data, four programs performed the requisite sequence 

of data generation and estimation.   A program written in R (R Development Core Team, 2008) 
generated simulees/items, simulated a full matrix of responses to those items, randomly divided 
simulees into specified groups, and analyzed the final output.  XCALIBRE (Assessment Systems 
Corporation, 1995) estimated the matrix of item parameters and vector of ˆsθ from the R output 
matrix of item responses.  The options for XCALIBRE were as follows: for all conditions, a 
floating prior was used; for all conditions, starting priors were ai ~ N(.80, .20) and bi ~ 
N(0.00,100.0); for all 3PL conditions, the starting prior for was ci ~ N(.20, .025).  SCOREALL 
(Assessment Systems Corporation, 1998) estimated the vector of  ˆsθ  given the R output matrix 
and XCALIBRE parameters.  Finally, POSTSIM (Assessment Systems Corporation, 2007) took 
the final R output matrix with XCALIBRE parameters and perfomed a P-H CAT simulation.  
XCALIBRE estimated item parameters for the HPP matrix by concurrent full-metric linking; 
instead of calibrating parameters by linking items to one group, XCALIBRE created a meta-scale 
by means of the anchor items, and linked all of the other items to that scale (see Gierl & 
Ackerman, 1996; Vale, 1986). 

The real-data hybrid (R-D/hybrid) study was based on a personality questionnaire of 615 
dichotomous items completed by 204 people.  Because the 3PL offers no advantage over the 2PL 
in model fit to personality data (e.g., Chernyshenko et al., 2001), the data were assumed to fit a 
2PL for estimation purposes; furthermore, item parameter estimates, based on the 2PL, were 
already provided for the response data.  Three of the four programs mentioned above performed 
the sequence of data generation and estimation.  A program written in R randomly selected items 
to delete listwise, deleted responses to those items, simulated responses according to the 2PL, 
and analyzed the final output.  SCOREALL estimated the vector of ˆsθ given the R output matrix  
with deleted items and previously estimated item parameters.  POSTSIM took the final R output 
matrix with provided item parameters and performed a P-H CAT simulation.  The main 
differences between the R-D/hybrid and the M-C/hybrid were that the R-D/hybrid had real 
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responses to a full set of items with already estimated parameters, while the M-C/hybrid 
simulated θ s, item parameters, and item responses. 

Procedure 
 M-C/hybrid study.  The M-C/hybrid procedure consisted of four parts: initial generation, 

estimation, final generation, and P-H simulation.  During initial generation, an IRT model was 
selected: either a 2PL or  a 3PL. A grouping of two, four, five, or ten item/examinee blocks was 
selected; the numbers of blocks was chosen so that the effects of differing levels of missingness 
could be assessed and so that the numbers of blocks divided evenly into the number of items 
(which resulted in no simulee in one group responding to the same item as a simulee in another 
group, except for the 20 linking items).  For each item/examinee block, 620 items and 1,000 
examinees were generated, 20 of those items were randomly selected as anchor items, and the 
remaining items and the 1,000 simulees were divided equally into each of the specified number 
of groups; a simulee took the 20 anchor items along with items corresponding to its group.  Thus, 
0-1 responses were simulated for the full matrix of items by simulees, and responses were 
deleted for items not in a simulee’s group   

The final output of initial generation consisted of two matrices: (1) a matrix of full responses 
for each simulee to every item, and (2) a partial (sparse or incomplete) matrix of responses to the 
20 anchor items and the items in a simulee’s group, with all other responses deleted.  Table 1 
provides details of the number of items and percentage of total items each simulee took based on 
its assigned group.  Note that for each condition, every simulee took the same number and the 
same subset of items.  The linking items were used in estimating parameters from the HPP 
matrix, and were also used to estimate θ  (but not the parameters) for HFP.  The HFP parameters 
were taken from FFP, which was a standard M-C simulation, with all 1,000 simulees taking all 
620 items; FFP was needed in order to compare how well the hybrid simulations performed 
relative to a standard simulation.  Furthermore, even though the linking items were not used in 
item parameter estimation for HFP, because simulees in HPP and HFP took the same number of 
items and the same items, this would control for extraneous item effects. 

 

Table 1. Conditions of the M-C/Hybrid Study 

 Group Condition 

Condition 2 Groups 4 Groups 5 Groups 10 Groups 

Number of items each simulee tooka 320 170 140 80 
Percentage of items each simulee tooka .516 .274 .226 .129 
Percentage of missing data for each simuleea .484 .726 .774 .871 
IRT model 1 2PL 2PL 2PL 2PL 
IRT model 2 3PL 3PL 3PL 3PL 
Base condition FFP FFP FFP FFP 
Hybrid condition I HFP HFP HFP HFP 
Hybrid condition II HPP HPP HPP HPP 
Termination criterion 1 (fixed) 40 Items 40 Items 40 Items 40 Items 
Termination criterion 2 (variable) SEM ≤ .20 SEM ≤ .20 SEM ≤ .20 SEM ≤ .20 
aIncluding the 20 anchor items, in the hybrid conditions (not the base condition). 
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During estimation, three sets of parameter/θ  combinations were created: (1) XCALIBRE 
was used to estimate the item parameter matrix and θ vector from the full matrix of responses; 
(2) XCALIBRE was used to estimate the parameter matrix and θ vector from the partial matrix 
of responses, using the linking items in concurrent calibration; or (3) the parameters estimated 
from the full matrix were used (with SCOREALL) to estimate the θ vector using the partial 
matrix of responses.  Each of these conditions corresponds to three theoretical scenarios:  

1. The full matrix of responses is available (from which a P-H simulation can proceed 
directly) 

2. Only a partial matrix of responses is available (both items and persons need to be 
calibrated with this partial matrix). 

3. The item parameter estimates are available and only θ  needs to be estimated for use in 
imputing missing data in the hybrid simulation.   

The final step in data generation was imputing responses in the partial matrix of responses 
with the item and person parameter estimates from Scenarios 2 and 3 above in place of the 
missing data. For Scenario 2, the item parameters were estimated from the partial matrix, θ was 
estimated by maximum likelihood estimation (MLE; Harwell, Baker, & Zwarts, 1988) from the 
partial matrix item parameters and the partial matrix item responses, and simulated responses to 
unadministered items in the partial matrix were based on monte-carlo data generation. For 
scenario 3, the item parameters were estimated from the full matrix, θ was estimated by MLE 
from the full matrix item parameters and the partial matrix item responses, and responses to the 
unadministered items were generated in the same manner  Thus, ultimately, there were three 
matrix/parameter pairs: (1) a matrix of full responses with parameters estimated from the full 
matrix (FFP), (2) a hybrid matrix of actual and imputed responses with parameters estimated 
from the partial matrix and responses imputed based on the partial matrix (HPP), and (3) a 
hybrid matrix of actual and imputed responses with parameters estimated from  the full matrix 
and responses imputed based on the partial matrix responses and the full matrix parameters 
(HFP).  For each of these matrix types, there were three datasets consisting of 2, 4, 5 and 10 
groups (Table 1) to investigate the effects of varying proportions of imputed data (see Table 1 for 
a complete description of conditions). 

During P-H simulation, a CAT was simulated with POSTSIM for each of the 
matrix/parameter pairs, selecting items based on Fisher information, and estimating θ using 
MLE.  Starting with an  initial θ  estimate (θ̂ ) of 0.0, if a simulee responded in the keyed 
direction, θ̂  was set to 3.0 until a non-mixed response pattern was achieved; if a simulee 
responded in the non-keyed direction, θ̂  was set to  −3.0 until a non-mixed response pattern was 
achieved.  Finally, the P-H CAT was terminated after both a fixed criterion (40 items) and a 
variable criterion (SEM ≤ .20).  Thus, there were eight conditions: (2PL or 3PL model) × (2 
groups, 4 groups, 5 groups, or 10 groups), with three matrix/parameter pairs for each condition 
(FFP, HFP, and HPP), and two termination criteria for each condition (fixed and variable); each 
condition was replicated four times and all analyses were performed in R and averaged over 
replications. 

R-D/hybrid study.  The real-data hybrid procedure consisted of four parts: deletion, θ 
estimation, final generation, and P-H simulation.  During deletion, items were selected for which 
item responses were deleted; the differing levels of missingness were nested, and the percentages 
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of missingness were the same as in the M-C/hybrid study (48.4%, 73.6%, 77.4%, and 87.1% 
missing data).  Nested missingness means that for one replication, 48.4% of the items were 
selected as missing data, and R deleted responses to those items; following that deletion, an 
additional 73.6 – 48.4 = 25.2% of the total items was chosen such that all of those items came 
from the remaining 51.6% of items remaining once the 48.4% of items was deleted; this pattern 
of using all of the items deleted in the previous level of missingness and adding items to that 
bank was continued for the final two levels of missingness.  Furthermore, as listwise deletion 
was used, for each of the items selected as missing data, all of the responses were deleted to 
those items.  Following deletion, SCOREALL estimated θ from the partial matrix of responses 
and previously estimated item parameters. 

Note that, in the R-D/hybrid procedure, only two types of matrices were used—one that 
consisted of a full matrix of real responses by 204 people to 615 items (similar to FFP above, 
with real responses instead of generated responses), and one which consisted of partially real 
responses to varying percentages of items, and partially estimated responses from already 
provided item parameter estimates (similar to HFP above).  There was no real-data hybrid matrix 
corresponding to HPP.  The final two steps were the same as the M-C/hybrid procedure; 
however, both 25 and 40 items were implemented as fixed termination criterion, along with SEM 
≤ .25 as the variable termination criterion. 

Analysis 

For both the M-C/hybrid and the P-C/hybrid studies, the POSTSIM ˆsθ from the full matrix 
were compared with CAT θ estimates from the full matrix and both hybrid matrices using 
correlations and root mean square indices with a fixed termination criterion of 40 items (for both 
types of studies), a fixed termination criterion of 25 items (only for the R-D/hybrid), and a 
variable termination criterion of SEM ≤ .20.  A variable termination criterion did not preclude 
final ˆsθ having an SEM exceeding .20; however, if an SEM fell below .20, the CAT ceased, and 
if an SEM exceeded .20 at the end of the test, the simulee had exhausted the entire item bank of 
all 620 items, which only rarely happened. 

All correlations were Pearson product-moment correlations. RMSE was defined as 

2
C F
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N

jk jk
iRMSE

N

θ θ
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−
=
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where j is the simulee index, k is the specific procedure used (FFP, HPP, or HFP), C is CAT, F is 
the full bank, and N is the total number of simulees (i.e., 1,000).  The RMSE, thus, is the square 
root of the average squared deviation between the θ̂  estimated from all of the items in the full 
matrix and the CATθ̂ ; because the full matrix is the best estimate of θ if the simulee completed 
the full item bank, the differences in the two θ̂  estimates essentially measure how deviant the 
CAT θ̂  was from the best estimate of θ  (i.e., the amount of accuracy lost in order to gain the 
efficiency from a sparse matrix). 

RMSD was defined as 
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where j is the simulee index, k and m are the procedures used (FFP, HPP, or HFP), and N = 
1,000.  Defined in this way, the RMSD is the square root of the average squared deviation 
between a specific θ̂  and a θ̂  from a different procedure.   

The model predicted SEM difference was defined as 
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where i is the simulee index, k is the procedure used (FFP, HPP, or HFP), C is the SEM from the 
CAT, F is the SEM from the full bank, and N = 1,000; furthermore, a 1 in place of k in the first 
SEM indicates that all of the CAT SEMs were compared to the FFP SEM.  Because the SEM 
from the FFP full bank will always be smaller than the CAT SEMs (due to the larger number of 
items), this number was always negative; furthermore, the larger this number is in absolute 
value, the larger the average increase in SEM is when implementing a specific hybrid CAT 
instead of having the simulee take all the items in the bank.  

The full bank SEM is the expected SEM (based on expected information) for differing 
levels of θ using the full bank of items, while the model-predicted SEM is based on observed 
information, instead of expected information, and solely includes the CAT items given.  In this 
case, for the full bank SEM, the researcher would estimate θ following the test, find the location 
on X axis of the bank SEM function (see Figure 1b) matching the θ̂ , and determine the SEM 
from the full test information function.  For observed SEM, the researcher would calculate the 
negative second derivative of the log-likelihood for all of the given items, then use the actual 
response in the second derivative (a 1 if the response was in the keyed direction, a 0 
otherwise)—this is the observed information for each item.  Finally, the researcher would sum all 
of the observed information values and take the reciprocal square-root of that sum.  The 
difference between observed and expected information is that observed information is based on 
the 0-1 responses examinees gave to each item while expected information is based solely on the 
information function at θ̂ .   

Results 
Standard Deviation Over Replications 

Each of the statistics computed had small replication standard deviations for most conditions.  
For the fixed termination criterion, the replication standard deviation of the correlations ranged 
from 2.89 × 10-4 to 1.01 × 10-2 (with most in the 10-3 to 10-4 range), the replication standard 
deviation of the model-predicted full test SEM ranged from 2.50 × 10-4 (for FFP, 2PL, 2 groups) 
to 4.68 × 10-3 (for HPP, 3PL, 5 groups), the replication standard deviation of the model-predicted 
CAT SEM ranged from 2.22  × 10-4 (for FFP, 2PL, 2 groups) to 1.37 × 10-2 (for HPP, 3PL, 5 
groups), and the replication standard deviation of the RMSE/RMSD ranged from 1.78 × 10-3 to 
3.09 × 10-2.  For the variable termination criterion, the replication standard deviation of the 
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correlations ranged from 1.26 × 10-4 to 7.19 × 10-3 and the replication standard deviation of the 
RMSE/RMSD ranged from 1.67 × 10-3 to 1.55 × 10-2; when examining the mean number of 
items taken in a variable-length CAT, the replication standard deviation was under 3.25 for all 
2PL conditions and near 4.5 for all of the remaining conditions except the 3PL with 5 groups, 
where the replication standard deviation was near 6 for all conditions except HPP, which had a 
replication standard deviation of 8.13.  For the median number of items taken in a variable-
length CAT, the replication standard deviation was similar to the respective replication standard 
deviations for the mean number of items, though it was slightly higher for most conditions 
(reaching a maximum of 8.64 with HPP, 3PL, 5 groups). 

M-C/Hybrid Simulation 
 The first three columns of Table 2 are the base comparisons (or FFP) for the fixed 

termination criterion.  They represent a standard M-C CAT simulation.  As would be expected, 
all of the correlations were high, with the 2PL the highest and a slight reduction when simulating 
data with the 3PL; furthermore, the RMSE rarely exceeded .20, and the average SEM difference 
[d(SEM)] was between −.0916 and .0954 for the 2PL and from −.114 to −.118 for the 3PL. 
 The middle three columns of Table 2 compare the FFP condition with the HFP condition 
for the fixed termination criterion; in these results, the imputed values did not include the extra 
error from parameter estimation, as the item parameters estimated from the complete full matrix 
were used to impute the missing responses in the partial matrix.  The final three columns of 
Table 2, for HPP, compare the full-matrix θ estimates with those from the complete hybrid 
simulation for the fixed-length CAT; in this data set, the imputed values included error from 
parameter estimation with the partial matrix before imputation.  Table 2 shows that the RMSE 
increased substantially in both conditions as the amount of missing data increased.  HPP RMSEs 
ranged from .188 to .311 for the 2PL, and from .244 to .410 for the 3PL.   HFP RMSEs ranged 
from .180 to .281 for the 2PL, and .241 to .371 for the 3PL; correlations for HFP decreased as 
the percentage of missing data increased, with a slightly larger increase for the 3PL.  However,  
in the case of 87% missing data, every simulee would only have taken only 80 of the 620 items 
with the remainder of the item responses imputed (see Table 1), from which  a CAT of 40 items 
was administered.  Combined with the difficulty of estimating parameters for the 3PL, 
correlations of .940 and .934 with the FFP θ̂  for HFP and HPP, respectively, reflect positively 
on the practical implications of a hybrid CAT.  Furthermore, the negligible difference between 
the two correlations of .0057 resulted from a substantially reduced number of simulees per item 
in order to estimate the parameters.  Correlations for all other conditions remained above .95 
(versus .98 for the FFP baseline condition); thus, the reductions in the correlations emerged at 
the limits of estimating the 3PL.  
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Table 2. Correlations, RMSE, and SEM Comparisons of Full Matrix F̂θ  Estimates  

With Three Ĉθ  Estimates for a Fixed-Length 40-Item CAT 

Percent of 
Missing Data 

FFP HFP HPP 
r RMSE d(SEM) r RMSE d(SEM) r RMSE d(SEM) 

2PL Model 
48.4% .989 .154 -.0916 .984 .180 -.0917 .984 .188 -.0910 
72.6% .989 .155 -.0947 .976 .227 -.0948 .975 .234 -.0934 
77.4% .989 .156 -.0933 .973 .239 -.0935 .973 .248 -.0946 
87.1% .988 .158 -.0953 .963 .281 -.0955 .959 .311 -.110 

3PL Model 
48.4% .983 .198 -.115 .974 .241 -.116 .974 .244 -.118 
72.6% .982 .202 -.117 .964 .285 -.118 .960 .309 -.126 
77.4% .983 .19 -.115 .958 .305 -.116 .955 .330 -.131 
87.1% .983 .200 -.117 .940 .371 -.119 .934 .410 -.147 

On average, the correlations of HFP Ĉθ  with FFP F̂θ  were only .0024 higher than the 

correlations of HPP Ĉθ with FFP F̂θ ; moreover, on average the RMSE of HFP CAT Ĉθ  with FFP 

F̂θ  were only .0183 lower than the correlations of HPP Ĉθ with FFP F̂θ .  However, the average 

d(SEM) of HFP Ĉθ with FFP F̂θ (–.0917 for 2PL with 48.7% missing data, to –.119 for the 3PL 
with 87.1% missing data) was much closer, for most conditions, to the base comparison (−.0916 
for 2PL with 48.7% missing data, to −.117 for the 3PL with 87.1% missing data) than the 
average  d(SEM) of HPP Ĉθ  with FFP F̂θ  (−.0910 for the 2PL with 48.7% missing data, to –.147 
for the 3PL with 87.1% missing data). 

Table 3 presents the same comparisons as Table 2, but for the variable termination condition.  
Note, in comparison with Table 2, that the correlations between F̂θ and Ĉθ  remained consistently 
high for both models, actually increasing  slightly when simulating responses with the 3PL; 
furthermore, the RMSE consistently decreased to some extent with the 3PL for FFP (for 
example, with 2 groups, the RMSE decreased from .178 for the 2PL to .168 for the 3PL) and 
remained around the same value for HPP (.209 with the 2PL to .217 with the 3PL for 48.4% 
missing data and HFP (.201 with the 2PL to .209 with the 3PL for 48.4% missing data).  These 
results were likely due to the lower information in the 3PL bank, so that under the variable 
termination criterion, more items were required (approximately 25–30 items, on average) to 
reach a fixed SEM. 

Similar to the fixed test length condition,  with a variable test length the correlations and 
RMSE when imputing responses based on the full matrix item parameters (HFP) improved very 
slightly over the correlations and RMSE when imputing responses based on the partial matrix 
item parameters (HPP).  The average correlation of HPP Ĉθ  with FPP F̂θ  was .966, while the 

average correlation of HFP Ĉθ  with FPP F̂θ   was .967, an improvement of only .001; 

furthermore, the average RMSE of HPP Ĉθ with FPP F̂θ  was .274, while the average RMSE of 

HFP Ĉθ  with FPP F̂θ  was .262, a difference of only .012.  However, as observed in Table 3, for 
all conditions, the average number of items given by the HFP CAT (42.7) was closer to the 
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average number of items in the FFP CAT (42.2) than to the average number of items in the HPP 
CAT (46.5), with the largest difference occurring in the 3PL where the difference increased as 
the percent of missing data increased. 

 

Table 3. Correlations, and RMSE Comparisons of Full Matrix F̂θ  Estimates  

With Three Ĉθ  Estimates for a Variable-Length CAT (Termination SEM = .20) 

Percent of 
Missing Data 

FFP HFP  HPP  

r RMSE 
Avg. 
Items r RMSE 

Avg. 
Items r RMSE 

Avg. 
Items 

2PL Model 
48.4% .985 .177 29.4 .981 .201 29.5 .98 .209 29.3 
72.6% .986 .174 31.3 .972 .242 31.3 .972 .248 30.8 
77.4% .985 .177 30.5 .969 .256 30.6 .969 .262 31.2 
87.1% .985 .177 31.8 .96 .293 31.9 .957 .317 34.5 

3PL Model 
48.4% .987 .168 52.7 .98 .209 53 .979 .217 54.3 
72.6% .988 .166 55.7 .969 .261 56.2 .968 .272 60.0 
77.4% .988 .166 53 .963 .285 54.2 .962 .295 62.1 
87.1% .987 .17 53.4 .946 .35 54.5 .942 .376 68.7 

Tables 4 and 5 compare the three Ĉθ  estimates for the fixed termination criterion (Table 4) 
and the variable termination criterion (Table 5).  As alluded to above and shown in Table 4, the 
three CAT procedures had similar SEMs for 48.4% and 72.6% missing data in the 2PL; however, 
with a large percentage of missing data (.774 or .871) with the 3PL, the SEM from the HPP CAT 
procedure diverged from both the HFP CAT SEM and the FFP CAT SEM.  For example, the 
average SEM for the FFP CAT, with the 2PL and .484 missing data, was .175, close to both the 
respective HFP CAT SEM (.175) and the HPP CAT SEM (.174); however, by increasing 
missingness to .871, using the 2PL, the average SEM for the FFP CAT was .181, the same as the 
respective HFP CAT SEM, but slightly further from the respective HPP CAT SEM (.186).  
Furthermore, with the 3PL, the average FFP CAT SEM was .224, slightly closer to the average 
HFP CAT SEM of .226 than the average HPP CAT SEM of .239. 

Moreover, even with a lower SEM (with a fixed termination criterion), and using fewer items 
(with a variable termination; see Table 5), the HFP CAT still slightly outperformed the HPP 
CAT in terms of correlations and RMSD with the full matrix CAT.  The average correlation of 
HFP Ĉθ with FFP Ĉθ under the fixed termination criterion was .959, while the average correlation 

of HPP Ĉθ with FFP Ĉθ under the fixed termination criterion was .954; though small, this 

difference was observed for every condition (see Table 4).  The average correlation of HFP Ĉθ  

with FFP Ĉθ  under the variable termination criterion was .960, while the average correlation of 

HPP Ĉθ  with FFP Ĉθ  under the variable termination criterion was .954 (see Table 5).  The 
RMSDs showed little differences across conditions (see Table 5). 

The median was examined for the variable-length condition to determine whether the mean 
numbers of items were affected by a few outliers; the median entries in Table 5 were averaged 
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across replications.  Comparing the median number of items in Table 5 with the mean number of 
items in Table 3, the mean number of items was always slightly  larger (evidencing a positive 
skew), but the difference was small (the difference between  a median of 66.25 to a mean of 68.7 
for HPP 10 groups was the largest difference). 

Table 4. Correlations, RMSD, and SEM Comparisons of Three Ĉθ Estimates  
for a Fixed-Length CAT, and Average CAT SEM   

Percent of 
Missing Data 

       FFP & HFP 
      r          RMSD 

     FFP & HPP 
     r        RMSD 

    HFP & HPP 
     r      RMSD 

          Average SEM 
   FFP         HFP        HPP 

2PL Model 
48.4% .984 .186 .982 .199 .983 .188 .175 .175 .174 
72.6% .970 .25 .968 .265 .974 .241 .180 .180 .179 
77.4% .965 .272 .964 .285 .972 .249 .178 .178 .179 
87.1% .954 .317 .948 .345 .969 .271 .181 .181 .186 

3PL Model 
48.4% .971 .257 .968 .270 .970 .262 .222 .224 .226 
72.6% .954 .324 .948 .351 .960 .3080 .228 .228 .237 
77.4% .948 .341 .941 .374 .956 .323 .223 .224 .239 
87.1% .927 .412 .918 .454 .953 .348 .224 .226 .254 

 

 
 

Table 5. Correlations and RMSD Comparisons of Three Ĉθ Estimates  
for a Variable-Length CAT, and Median Number of Items 

Percent of 
Missing Data 

    FFP & HFP 
      r        RMSD 

  FFP & HPP 
  r        RMSD 

HFP & HPP 
    r      RMSD 

Median Number of Items 
   FFP       HFP        HPP 

2PL Model 
48.4% .979 .201 .977 .222 .978 .216 28.5 28.75 28.75 
72.6% .965 .275 .963 .285 .968 .265 30.75 30.75 30.25 
77.4% .959 .296 .957 .309 .966 .277 29.75 30.25 30 
87.1% .948 .336 .944 .358 .964 .288 31 31 33.5 

3PL Model 
48.4% .978 .218 .975 .237 .978 .222 51 51.25 52.75 
72.6% .963 .287 .960 .302 .971 .256 54.5 54.75 60 
77.4% .955 .314 .952 .331 .968 .274 52 52 60 
87.1% .936 .382 .930 .411 .965 .292 51.75 52 66.25 

 

Table 6 compares the F̂θ of each condition. Because both the fixed and variable termination 

criteria did not affect the F̂θ , Table 6 is identical for both conditions.  Interestingly, the full bank 
SEM was relatively similar for all conditions except the 3PL with .871 missing data, in which it 
diverged slightly for HPP (.112) from both (HFP) (.108) and FFP (.107).  However, the 
comparability of all but the latter suggests that the main benefit of using HFP over HPP (and, 
thus, employing already calibrated parameters from which to estimate θ, simulate responses, and 
perform a P-H simulation, instead of estimating both item and person parameters from the partial 
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matrix of responses) lies, mostly, in the CAT procedure.  Moreover, the slight benefit in 
accuracy (both in terms of correlation and RMSE) of HFP over HPP stayed relatively the same 
through Tables 2–6, regardless of whether the comparison was between  CAT vs. full bank, CAT 
vs. CAT, or full bank vs. full  bank. 

Table 6. Correlations, RMSE, and SEM Comparisons of  
Three F̂θ   Estimates and Full Bank Average SEM 

Percent of 
Missing Data 

      FFP & HFP 
    r          RMSE 

  FFP & HPP 
     r        RMSE 

   HFP & HPP 
     r      RMSE 

          Average SEM 
   FFP         HFP        HPP 

2PL Model 
48.4% .995 .097 .995 .103 .997 .082 .083 .083 .083 
72.6% .988 .158 .986 .169 .994 .116 .085 .085 .085 
77.4% .985 .176 .984 .186 .993 .121 .084 .084 .084 
87.1% .975 .231 .971 .255 .991 .142 .085 .085 .086 

3PL Model 
48.4% .992 .129 .992 .133 .994 .111 .108 .108 .108 
72.6% .981 .202 .980 .209 .991 .140 .111 .112 .112 
77.4% .976 .228 .974 .240 .990 .152 .108 .109 .110 
87.1% .958 .205 .955 .330 .988 .174 .107 .108 .112 

 

R-D/Hybrid Simulation 
Table 7 is similar to Table 3 in layout; however, the HPP condition was removed because the 

item parameters were provided before the simulation.  Also, because FFP had no missing data, 
given a particular termination criterion, and because the matrix of full responses did not change, 
all of the FFP comparisons with itself (correlation between FFP F̂θ  and FFP Ĉθ , mean and 
median number of items, RMSE, etc.) remained identical for the four levels of missingness.  The 
first four rows of Table 7 provide results for a fixed termination criterion of 25 items, while the 
last four rows present results for a fixed termination criterion of 40 items.  As the number of 
CAT items increased, all of the statistics improved.  The correlation of FFP F̂θ  with FFP Ĉθ  
increased from .937 with 25 items to .953 with 40 items, the RMSE decreased from .485 to .421, 
and the difference in SEM decreased in absolute magnitude from .196 to .142.  This trend held 
within conditions for the hybrid simulation ,as well.  FFP F̂θ  correlated with HFP Ĉθ  .958 with 

25 items and 48.4% missing data, and FFP F̂θ  correlated with HFP Ĉθ  .971 with 40 items and 

48.4% missing data.  Similarly the RMSE of FFP F̂θ  with HFP F̂θ  decreased from .392 to .327, 
and the difference in SEM decreased in absolute magnitude from .196 to .141. 
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Table 7. Correlations, RMSE, and SEM Comparisons  
of Full Matrix F̂θ  Estimates With Two Ĉθ  Estimates  

for Fixed-Length CATs Based on Real Data 
Percent of 

Missing Data 
 FFP    HFP   

r RMSE d(SEM) r RMSE d(SEM) 
25 Items 
48.4% .937 .485 -.196 .958 .392 -.196 
72.6% .937 .485 -.196 .959 .408 -.208 
77.4% .937 .485 -.196 .957 .397 -.196 
87.1% .937 .485 -.196 .954 .420 -.197 

40 Items 
48.4% .953 .421 -.142 .971 .327 -.141 
72.6% .953 .421 -.142 .969 .350 -.153 
77.4% .953 .421 -.142 .968 .348 -.142 
87.1% .953 .421 -.142 .963 .379 -.143 

Comparing the performance of the HFP CAT relative to the FFP CAT (with the FFP full 
matrix as the level of comparison), the correlation increased for the HFP CAT from .937 
(comparing FFP F̂θ  with FFP Ĉθ with a fixed termination criterion of 25 items) to from .954 

(comparing FFP F̂θ with HFP Ĉθ  for 87.1% missing data) to .958 (comparing FFP F̂θ with HFP 

Ĉθ  for 72.6% missing data).  For either termination criterion, the level of missingness did not 
appear to make much of a difference for any of the statistics (correlations of .963 comparing FFP 

F̂θ  with HFP Ĉθ for 40 items and 87.1% missing data to .971 comparing FFP F̂θ with HFP Ĉθ for 
40 items and 48.4% missing data, RMSE of .392 to .420 for 25 items and .327 to .379 for 40 
items, and SEM difference in absolute magnitude of around .197 for 25 items and around .142 
for 40 items).  However, the HFP CAT consistently performed better than the FFP CAT 
regardless of condition [higher correlation, lower RMSE, and lower d(SEM) in absolute 
magnitude]. 

As shown in Table 8, for the variable termination criterion, the correlations of FFP F̂θ  with 

HFP Ĉθ  were still somewhat higher than the correlations of FFP F̂θ  with FFP Ĉθ  (.973 for 48.4% 
missing data, .970 for 72.6% and 77.4% missing data, and .965 for 87.1% missing data for FFP 

F̂θ  with HFP Ĉθ , compared to a correlation of .957 for FFP F̂θ with FFP Ĉθ ).  Moreover, the 

RMSE of FFP F̂θ  with HFP Ĉθ was .093 (for 48.4% missing data) to .036 (for 87.1% missing 

data) lower than the RMSE of FFP F̂θ  with FFP Ĉθ .  However, the increase in correlation and 
decrease in RMSE translated into at most a one-item improvement of the HFP CAT over the FFP 
CAT (48.4 average items for FFP CAT versus 47.3 average items for HFP CAT with 48.4% 
missing data).  Except for the 48.4% missing data condition (which was only approximately one 
item lower than the FFP CAT), the rest of the item averages were similar comparing FFP to 
HFP. 
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Table 8. Correlations, RMSE, and Average Number of Items  
Comparisons of Full Matrix F̂θ  Estimates With Two Ĉθ   

Estimates for a Variable-Length CAT 
(Termination SEM = .25) Based on Real Responses 

Percent of  
Missing Data 

FFP HFP 

r RMSE 
Avg. 
Items r RMSE 

Avg. 
Items 

48.4% .957 .402 48.4 .973 .309 47.3 
72.6% .957 .402 48.4 .970 .341 48.1 
77.4% .957 .402 48.4 .970 .331 47.7 
87.1% .957 .402 48.4 .965 .366 48.9 

Comparing the fixed termination CATs of FFP with HFP (see Table 9), the correlations 
remained above .90.  With 48.4% missing data, the correlation between FFP Ĉθ and HFP Ĉθ was 
.940 for a 25-item CAT and .959 for a for a 40-items CAT; with 87.1% missing data, the 
correlation between FFP Ĉθ and HFP Ĉθ was .908 for a 25-item CAT and .928 for a 40-item 
CAT.  The RMSDs were approximately .500 for every condition, except 48.4% missing data 
with a 40-item CAT (where the RMSD was .393); these RMSDs would be high except for the 
fact that with 87.1% data missing completely at random, most of the HFP CAT responses were 
computer generated, while the FFP CAT responses had error from potential misfit.  Furthermore, 
the average SEM of .310 for the FFP Ĉθ with 25 items was approximately equal to .309 (with 

48.4% missing data) to .322 (with 72.6% missing data) for the HFP Ĉθ , while the average SEM 

of .356 for the FFP Ĉθ with 40 items was between .255 to .266 for the HFP Ĉθ . 

Table 9. Correlations, RMSD, and SEM  
Comparisons of Two Ĉθ  Estimates for  

Fixed-Length CATs, and Average SEM 
Percent of 

Missing Data 
     FFP & HFP  
      r        RMSD 

Average SEM 
     FFP          HFP 

25 Items 
48.4 .940 .473 .310 .309 
72.6 .910 .593 .310 .322 
77.4 .913 .572 .310 .310 
87.1 .908 .599 .310 .311 

40 Items 
48.4 .959 .393 .256 .255 
72.6 .931 .515 .256 .266 
77.4 .934 .499 .256 .256 
87.1 .928 .528 .256 .257 

As shown in Table 10, comparing the two variable termination CAT estimates, the 
correlations ranged from a high of .961 (comparing FFP Ĉθ with an HFP Ĉθ re-simulating 48.4% 
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of the data) to a low of .928 (comparing FFP Ĉθ with an HFP Ĉθ re-simulating 87.1% of the 
data); furthermore, the RMSD ranged from .377 for the former condition to .525 for the latter 
condition above.  The correlations and RMSDs for the respective conditions were similar to the 
statistics of the 40-item fixed termination criterion.  Also, the median number of items (35) for 
the HFP CAT  was consistently one item lower than the median number of items for the FFP 
CAT (36).   

Table 10. Correlations and RMSD Comparisons of Two Ĉθ Estimates for a  
Variable-Length CAT, Median Number of Items, and Correlations, RMSE,  

and SEM Comparisons of Two F̂θ Estimates and Full Bank Average SEM  

Percent of  
Missing Data 

FFP Ĉθ  & HFP Ĉθ  
         r          RMSD 

Median No. of Items 
    FFP Ĉθ      HFP Ĉθ  

FFP F̂θ  & HFP F̂θ  
       r            RMSE 

Average SEM 

    FFP F̂θ         HFP F̂θ  

48.4% .961 .377 36 35 .994 .141 .114 .114 
72.6% .934 .498 36 35 .986 .229 .114 .115 
77.4% .937 .483 36 35 .985 .238 .114 .115 
87.1% .928 .525 36 35.25 .979 .278 .114 .115 

Finally, comparing the FFP F̂θ with HFP F̂θ , the correlations were consistently high (.979 for 
87.1% missing data to .994 for 48.4% missing data), the RMSE was consistently low (.141 for 
48.4% missing data to .278 for 87.1% missing data), and the average full test SEMs were 
approximately the same (.114) for all conditions.  The latter results suggest that randomly 
removing 48.4% to 87.1% of the data did not substantially affect the precision of the θ estimates.   

Discussion and Conclusions 
This study addressed a methodological problem in CAT implementation—namely, if 

researchers cannot administer every item in a CAT item bank, how can they predict the 
performance of a CAT with a real item bank?  Beyond measuring the RMSE, bias, SEM, and 
average number of items administered under a specified configuration of CAT options, other 
procedural concerns (see Chang & Ying, 1999, van der Linden & Chang, 2003, van der Linden 
& Velkamp, 2004 for references on item exposure controls) depend on knowing the relative 
frequency of items (based, solely, on the item selection algorithm), and this necessitates every 
item having the possibility of occurring in every test.  Thus, some method of imputing responses 
to non-administered questions was needed; the approach examined here was to use parameter 
and θ estimates from a sparse data matrix and simulate missing responses from an assumed IRT 
model. 

Simulating responses adds a potential source of error—namely that of incorrectly estimating 
θ, and consequently, inaccurately specifying the probability of response.  In addition, estimating 
item parameters from a sparse matrix adds another potential source of error—the loss in 
precision by having fewer responses to estimate item parameters.  These sources of error would 
be expected to increase the RMSEs and SEMs of the θ estimates.  That is what was found in the 
hybrid simulations based on monte-carlo data; the FFP CAT, with the least amount of estimation 
error had a lower RMSE and SEM than the HFP, with only the added estimation error of θ 
estimates based on a smaller number of items, which had a lower RMSE and SEM than the HPP, 
which included the estimation error of incorrect θ estimates plus estimation error from parameter 
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estimation using a sparse data matrix.  Furthermore, as the amount of missing data increased, the 
RMSEs and SEMs also became larger.   

Because an increase in RMSE and SEM was inevitable, it was necessary to determine if the 
tradeoff in the ability to fully estimate θ  from a CAT was worth the added imprecision.  
Remarkably, the results from Tables 2 and 3 suggest that if item parameters are available from a 
preliminary calibration, estimating the gain in efficiency by using a CAT over a standard test 
would lose almost no information with a partial matrix of responses – even with up to 80% 
missing data.  The main loss of information would reside in the estimated accuracy; however, in 
Tables 2 and 3, the correlations remained high and the SEM remained low comparing either 
hybrid matrix with the full matrix, except at the limits of estimating the model. 

The results of this study suggest that, for every condition, although the two hybrid matrices 
were similar in the accuracy of their θ estimates, the HFP, which had parameters estimated from 
the full matrix (or, in a real application of the procedure, had parameters already provided), did 
so with efficiency close to that of the full-matrix CAT.  Furthermore, even with 87% missing 
data, using HPP, in which only 100 simulees took each of the items (in addition to the 20 anchor 
items that every simulee took), correlations of θ estimates still ranged in the middle .90s. 

Because the correlations were high, it was necessary to determine the difference between the 
simulation methods.  In this study, if the original responses perfectly fit the model, the hybrid 
statistics were biased to underpredict performance; this is clear when examining the full 
parameter CAT (the base condition) versus any of the other two conditions.  The base condition 
generally had higher correlations and lower RMSEs.  However, with the conditions using real 
responses to real data, the hybrid statistics were biased to overpredict performance, and this was 
more drastic for the lower number of groups.  Thus, it appeared as though, in the monte-carlo 
based hybrid stimulation, there was only one source of error; in the real-data hybrid simulation 
there were two sources of error—the original source of error (incorrectly estimating θ with fewer 
responses to fewer items), and a source of error whereby new responses (once θ was estimated) 
perfectly fit the model.  With fewer groups, the latter source of error was predominant and most 
estimation statistics were drastically overperforming; however, as the number of groups 
increased and as missing data increased, the two sources of error started to balance each other, 
and the performance estimates started to approach actual performance levels. 

Limitations 
Since this report is the first implementation of the hybrid simulation procedure, the θ 

distribution was kept simple, though, in the future, researchers should replicate this study with 
different distributional assumptions.   Furthermore, an ideal CAT item bank was created, with 
relatively high discriminations and a wide range of item difficulties.  A researcher seeking to 
administer an adaptive test might not have the resources to develop an item bank similar to the 
one used in this study; with a more peaked item bank or with lower discriminations, the 
correlations between θ  estimates from  CATs using a hybrid matrix  and the θ  estimates from 
all items in the full matrix might be lower.  Mills and Stocking (1996), addressed a wide range of 
CAT administration issues, including item bank characteristics, item ordering and grouping (e.g., 
CATs based on testlets; Wainer & Kiely, 1987), and item selection initiation and termination, 
each of which would have to be examined within the context of a hybrid  simulation paradigm.  
However, though more research is needed, the preliminary results show the hybrid simulation 
method appears to effectively solve a heretofore unresolved problem in CAT. 
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